mistral.py 4.56 KB
Newer Older
Casper's avatar
Casper committed
1
2
import tqdm
from typing import List, Tuple
Casper Hansen's avatar
Casper Hansen committed
3
from .base import BaseAWQForCausalLM
Casper's avatar
Casper committed
4
5
6
7
8
from awq.utils.fused_utils import fuse_qkv
from awq.modules.fused.block import LlamaLikeBlock
from awq.modules.fused.model import LlamaLikeModel
from transformers.models.mistral.modeling_mistral import (
    MistralDecoderLayer as OldMistralDecoderLayer,
Casper's avatar
Casper committed
9
    MistralForCausalLM as OldMistralForCausalLM,
Casper's avatar
Casper committed
10
11
)
from awq.modules.fused.norm import FasterTransformerRMSNorm
Casper Hansen's avatar
Casper Hansen committed
12

Casper's avatar
Casper committed
13

Casper Hansen's avatar
Casper Hansen committed
14
15
class MistralAWQForCausalLM(BaseAWQForCausalLM):
    layer_type = "MistralDecoderLayer"
Casper's avatar
Casper committed
16
    max_seq_len_key = "max_position_embeddings"
Casper Hansen's avatar
Casper Hansen committed
17

Casper Hansen's avatar
Casper Hansen committed
18
    @staticmethod
Casper's avatar
Casper committed
19
    def fuse_layers(model: OldMistralForCausalLM):
Casper's avatar
Casper committed
20
        fuser = MistralFuser(model)
Casper's avatar
Casper committed
21
22
        fuser.fuse_transformer()

Casper Hansen's avatar
Casper Hansen committed
23
    @staticmethod
Casper's avatar
Casper committed
24
    def get_model_layers(model: OldMistralForCausalLM):
Casper Hansen's avatar
Casper Hansen committed
25
        return model.model.layers
Casper's avatar
Casper committed
26

Casper Hansen's avatar
Casper Hansen committed
27
    @staticmethod
Casper's avatar
Casper committed
28
    def get_act_for_scaling(module: OldMistralDecoderLayer):
Casper's avatar
Casper committed
29
30
        return dict(is_scalable=False)

Casper Hansen's avatar
Casper Hansen committed
31
    @staticmethod
Casper's avatar
Casper committed
32
    def move_embed(model: OldMistralForCausalLM, device: str):
Casper Hansen's avatar
Casper Hansen committed
33
        model.model.embed_tokens = model.model.embed_tokens.to(device)
Casper's avatar
Casper committed
34

Casper Hansen's avatar
Casper Hansen committed
35
    @staticmethod
Casper's avatar
Casper committed
36
37
38
    def get_layers_for_scaling(
        module: OldMistralDecoderLayer, input_feat, module_kwargs
    ):
Casper Hansen's avatar
Casper Hansen committed
39
40
41
        layers = []

        # attention input
Casper's avatar
Casper committed
42
43
44
45
46
47
48
49
50
51
52
53
54
        layers.append(
            dict(
                prev_op=module.input_layernorm,
                layers=[
                    module.self_attn.q_proj,
                    module.self_attn.k_proj,
                    module.self_attn.v_proj,
                ],
                inp=input_feat["self_attn.q_proj"],
                module2inspect=module.self_attn,
                kwargs=module_kwargs,
            )
        )
Casper Hansen's avatar
Casper Hansen committed
55
56
57
58

        # attention out
        # Please refer to https://github.com/mit-han-lab/llm-awq/pull/67#issue-1850622696
        if module.self_attn.v_proj.weight.shape == module.self_attn.o_proj.weight.shape:
Casper's avatar
Casper committed
59
60
61
62
63
64
65
66
            layers.append(
                dict(
                    prev_op=module.self_attn.v_proj,
                    layers=[module.self_attn.o_proj],
                    inp=input_feat["self_attn.o_proj"],
                )
            )

Casper Hansen's avatar
Casper Hansen committed
67
        # linear 1
Casper's avatar
Casper committed
68
69
70
71
72
73
74
75
        layers.append(
            dict(
                prev_op=module.post_attention_layernorm,
                layers=[module.mlp.gate_proj, module.mlp.up_proj],
                inp=input_feat["mlp.gate_proj"],
                module2inspect=module.mlp,
            )
        )
Casper Hansen's avatar
Casper Hansen committed
76
77

        # linear 2
Casper's avatar
Casper committed
78
79
80
81
82
83
84
        layers.append(
            dict(
                prev_op=module.mlp.up_proj,
                layers=[module.mlp.down_proj],
                inp=input_feat["mlp.down_proj"],
            )
        )
Casper Hansen's avatar
Casper Hansen committed
85
86

        return layers
Casper Hansen's avatar
Casper Hansen committed
87
88
89


class MistralFuser:
Casper's avatar
Casper committed
90
    def __init__(self, model: OldMistralForCausalLM):
Casper Hansen's avatar
Casper Hansen committed
91
92
        self.model = model

Casper's avatar
Casper committed
93
        self.mistral_blocks: List[Tuple[str, OldMistralDecoderLayer]] = [
Casper's avatar
Casper committed
94
95
96
            (name, module)
            for name, module in self.model.named_modules()
            if "MistralDecoderLayer".lower() in module.__class__.__name__.lower()
Casper Hansen's avatar
Casper Hansen committed
97
        ]
Casper's avatar
Casper committed
98

Casper's avatar
Casper committed
99
100
101
102
103
104
105
106
107
108
    def fuse_transformer(self):
        blocks = []

        module: OldMistralDecoderLayer
        for module in tqdm.tqdm(self.model.model.layers, desc="Fusing layers..."):
            device = next(iter(module.state_dict().values())).device
            qkv = fuse_qkv(
                module,
                module.self_attn.q_proj,
                module.self_attn.k_proj,
Casper's avatar
Casper committed
109
                module.self_attn.v_proj,
Casper Hansen's avatar
Casper Hansen committed
110
            )
Casper's avatar
Casper committed
111
            norm_1 = FasterTransformerRMSNorm(
Casper's avatar
Casper committed
112
                module.input_layernorm.weight, module.input_layernorm.variance_epsilon
Casper's avatar
Casper committed
113
114
115
            )
            norm_2 = FasterTransformerRMSNorm(
                module.post_attention_layernorm.weight,
Casper's avatar
Casper committed
116
                module.post_attention_layernorm.variance_epsilon,
Casper's avatar
Casper committed
117
            )
Casper's avatar
Casper committed
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
            blocks.append(
                LlamaLikeBlock(
                    hidden_size=self.model.config.hidden_size,
                    n_heads=self.model.config.num_attention_heads,
                    n_kv_heads=self.model.config.num_key_value_heads,
                    qkv_layer=qkv,
                    o_proj=module.self_attn.o_proj,
                    mlp=module.mlp,
                    norm_1=norm_1,
                    norm_2=norm_2,
                    dev=device,
                    max_seq_len=self.model.config.max_seq_len,
                )
            )

Casper's avatar
Casper committed
133
134
135
136
137
138
        self.model.model = LlamaLikeModel(
            self.model.config.vocab_size,
            blocks,
            self.model.model.embed_tokens,
            self.model.model.norm,
        )
139
        setattr(self.model.model, "blocks", self.model.model.blocks)