dequantize.cuh 3.86 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
/*
Modified from NVIDIA FasterTransformer: https://github.com/NVIDIA/FasterTransformer/blob/main/src/fastertransformer/cutlass_extensions/include/cutlass_extensions/interleaved_numeric_conversion.h

@article{lin2023awq,
  title={AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration},
  author={Lin, Ji and Tang, Jiaming and Tang, Haotian and Yang, Shang and Dang, Xingyu and Han, Song},
  journal={arXiv},
  year={2023}
}
*/

Ji Lin's avatar
Ji Lin committed
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
#pragma once


__device__ uint4 dequantize_s4_to_fp16x2(uint32_t const& source)
{
    uint4 result;

    uint32_t*      h   = reinterpret_cast<uint32_t*>(&result);
    uint32_t const i4s = reinterpret_cast<uint32_t const&>(source);

    // First, we extract the i4s and construct an intermediate fp16 number.
    static constexpr uint32_t immLut                = (0xf0 & 0xcc) | 0xaa;
    static constexpr uint32_t BOTTOM_MASK           = 0x000f000f;
    static constexpr uint32_t TOP_MASK              = 0x00f000f0;
    static constexpr uint32_t I4s_TO_F16s_MAGIC_NUM = 0x64006400;

    // Note that the entire sequence only requires 1 shift instruction. This is thanks to the register packing
    // format and the fact that we force our integers to be unsigned, and account for this in the fp16 subtractions.
    // In addition, I exploit the fact that sub and fma have the same throughput in order to convert elt_23 and
    // elt_67 to fp16 without having to shift them to the bottom bits before hand.

    // Shift right by 8 to now consider elt_45 and elt_67. Issue first to hide RAW dependency if we issue
    // immediately before required.
    const uint32_t top_i4s = i4s >> 8;
    // Extract elt_01 - (i4s & 0x000f000f) | 0x64006400
    asm volatile("lop3.b32 %0, %1, %2, %3, %4;\n"
                    : "=r"(h[0])
                    : "r"(i4s), "n"(BOTTOM_MASK), "n"(I4s_TO_F16s_MAGIC_NUM), "n"(immLut));
    // Extract elt_23 (i4s & 0x00f000f0) | 0x64006400
    asm volatile("lop3.b32 %0, %1, %2, %3, %4;\n"
                    : "=r"(h[1])
                    : "r"(i4s), "n"(TOP_MASK), "n"(I4s_TO_F16s_MAGIC_NUM), "n"(immLut));
    // Extract elt_45 (top_i4s & 0x000f000f) | 0x64006400
    asm volatile("lop3.b32 %0, %1, %2, %3, %4;\n"
                    : "=r"(h[2])
                    : "r"(top_i4s), "n"(BOTTOM_MASK), "n"(I4s_TO_F16s_MAGIC_NUM), "n"(immLut));
    // Extract elt_67 (top_i4s & 0x00f000f0) | 0x64006400
    asm volatile("lop3.b32 %0, %1, %2, %3, %4;\n"
                    : "=r"(h[3])
                    : "r"(top_i4s), "n"(TOP_MASK), "n"(I4s_TO_F16s_MAGIC_NUM), "n"(immLut));

    // I use inline PTX below because I am not sure if the compiler will emit float2half instructions if I use the
    // half2 ctor. In this case, I chose performance reliability over code readability.

    // This is the half2 {1032, 1032} represented as an integer.
    // static constexpr uint32_t FP16_TOP_MAGIC_NUM = 0x64086408;
    // Haotian: subtract {1024, 1024} instead, we do not need to map to [-8, 7]
    static constexpr uint32_t FP16_TOP_MAGIC_NUM = 0x64006400;
    // This is the half2 {1 / 16, 1 / 16} represented as an integer.
    static constexpr uint32_t ONE_SIXTEENTH = 0x2c002c00;
    // This is the half2 {-72, -72} represented as an integer.
    // static constexpr uint32_t NEG_72 = 0xd480d480;
    // Haotian: Let's use {-64, -64}.
    static constexpr uint32_t NEG_64 = 0xd400d400;

    // Finally, we construct the output numbers.
    // Convert elt_01
    asm volatile("sub.f16x2 %0, %1, %2;\n" : "=r"(h[0]) : "r"(h[0]), "r"(FP16_TOP_MAGIC_NUM));
    // Convert elt_23
    asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n" : "=r"(h[1]) : "r"(h[1]), "r"(ONE_SIXTEENTH), "r"(NEG_64));
    // Convert elt_45
    asm volatile("sub.f16x2 %0, %1, %2;\n" : "=r"(h[2]) : "r"(h[2]), "r"(FP16_TOP_MAGIC_NUM));
    // Convert elt_67
    asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n" : "=r"(h[3]) : "r"(h[3]), "r"(ONE_SIXTEENTH), "r"(NEG_64));

    return result;
}