"research/object_detection/legacy/eval.py" did not exist on "7a9934df2afdf95be9405b4e9f1f2480d748dc40"
gemv_fast.py 6.59 KB
Newer Older
Casper's avatar
Casper committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import torch

try:
    import awq_v2_ext  # with CUDA kernels (AutoAWQ_kernels)

    AWQ_INSTALLED = True
except:
    AWQ_INSTALLED = False


def make_divisible(c, divisor):
    return (c + divisor - 1) // divisor


def calculate_zeros_width(in_features, group_size=128, pack_num=8):
    if group_size >= 128:
        size_multiplier = 1
    elif group_size == 64:
        size_multiplier = 2
    elif group_size == 32:
        size_multiplier = 4
    else:
        raise NotImplementedError

    base_width = make_divisible(in_features // group_size, pack_num)
    base_width = make_divisible(base_width, size_multiplier) * size_multiplier
    return base_width


def pack_intweight(unpacked_qweight, interleave, kstride):
    # unpacked_qweight: [N, K]
    N = unpacked_qweight.shape[0]
    K = unpacked_qweight.shape[1]

    Packed_Kernel = unpacked_qweight.cpu().numpy().reshape(N, K // 32, 32)
    # np.arange(32).reshape(4, 4, 2).transpose(1, 0, 2) => [0, 1, 8, 9, 16, 17, 24, 25, ...]
    Packed_Kernel = Packed_Kernel.reshape(N, K // 32, 4, 4, 2).transpose(0, 1, 3, 2, 4)
    Packed_Kernel = Packed_Kernel.reshape(N, K // 32, 32)

    # reorder each 8 weights for fast dequantization
    # [0, 1, 2, 3, 4, 5, 6, 7] => [0, 2, 4, 6, 1, 3, 5, 7]
    Packed_Kernel = Packed_Kernel.reshape(N, K // 32, 4, 8)
    Packed_Kernel = Packed_Kernel.reshape(N, K // 32, 4, 4, 2).transpose(0, 1, 2, 4, 3)
    Packed_Kernel = Packed_Kernel.reshape(N, K)

    # interleaving every four rows
    Packed_Kernel = Packed_Kernel.reshape(
        N // interleave, interleave, K // kstride, kstride
    )
    # N // 4, K // 64, 4, 64
    Packed_Kernel = Packed_Kernel.transpose(0, 2, 1, 3)
    Packed_Kernel = Packed_Kernel.reshape(
        N // interleave, K // kstride, kstride, interleave
    )
    # Packing -> (N // 4, K // 64, 64)
    Packed_Kernel = (
        Packed_Kernel[..., 0]
        | (Packed_Kernel[..., 1] << 4)
        | (Packed_Kernel[..., 2] << 8)
        | (Packed_Kernel[..., 3] << 12)
    )
    # reshape to (N // 4, K), FP16 format
    Packed_Kernel = Packed_Kernel.reshape(N // interleave, K)
    qweight = (
        torch.tensor(Packed_Kernel.astype("int16"))
        .to(unpacked_qweight.device)
        .contiguous()
    )
    return qweight


class WQLinear_GEMVFast(torch.nn.Module):
    def __init__(self, w_bit, group_size, in_features, out_features, bias, dev):
        super().__init__()

        self.in_features = in_features
        self.out_features = out_features
        self.w_bit = w_bit
        self.group_size = group_size if group_size != -1 else in_features
        self.split_k_iters = 8
        self.interleave = 4

        # quick sanity check (make sure aligment)
        assert self.in_features % self.group_size == 0
        assert out_features % (32 // self.w_bit) == 0
        pack_num = 32 // self.w_bit
        int16_pack_num = 16 // self.w_bit

        assert out_features % (self.interleave) == 0
        self.register_buffer(
            "qweight",
            torch.zeros(
                (
                    out_features // self.interleave,
                    in_features // int16_pack_num * self.interleave,
                ),
                dtype=torch.int16,
                device=dev,
            ),
        )
        self.register_buffer(
            "scales",
            torch.zeros(
                (
                    calculate_zeros_width(in_features, self.group_size) * pack_num,
                    out_features,
                ),
                dtype=torch.float16,
                device=dev,
            ),
        )
        self.register_buffer(
            "qzeros",
            torch.zeros(
                (
                    calculate_zeros_width(in_features, self.group_size) * pack_num,
                    out_features,
                ),
                dtype=torch.float16,
                device=dev,
            ),
        )

        if bias:
            self.register_buffer(
                "bias", torch.zeros((out_features), dtype=torch.float16, device=dev)
            )
        else:
            self.bias = None

    @classmethod
    def from_linear(
        cls, linear, w_bit, group_size, init_only=False, scales=None, zeros=None
    ):
        awq_linear = cls(
            w_bit,
            group_size,
            linear.in_features,
            linear.out_features,
            linear.bias is not None,
            linear.weight.device,
        )
        if init_only:
            return awq_linear

        # need scales and zeros info for real quantization
        assert scales is not None and zeros is not None
        scale_zeros = zeros * scales

        pack_num = 32 // awq_linear.w_bit
        qscales = torch.zeros(
            (
                scales.shape[0],
                calculate_zeros_width(linear.in_features, group_size) * pack_num,
            ),
            dtype=torch.float16,
            device=scales.device,
        )
        qscales[:, : scales.shape[1]] = scales
        # awq_linear.scales = scales.clone().half()
        awq_linear.scales = qscales.transpose(1, 0).contiguous()
        if linear.bias is not None:
            awq_linear.bias = linear.bias.clone().half()

        intweight = []
        for idx in range(awq_linear.in_features):
            intweight.append(
                torch.round(
                    (linear.weight.data[:, idx] + scale_zeros[:, idx // group_size])
                    / qscales[:, idx // group_size]
                ).to(torch.int)[:, None]
            )
        intweight = torch.cat(intweight, dim=1)
        intweight = intweight.to(dtype=torch.int32)
        awq_linear.qweight = pack_intweight(
            intweight.contiguous(), interleave=4, kstride=64
        )

        zeros = zeros.to(dtype=torch.int32)
        qzeros = torch.zeros_like(qscales)

        qzeros[:, : scales.shape[1]] = -(
            qscales[:, : scales.shape[1]] * (zeros.to(torch.float32))
        ).to(torch.float16)
        awq_linear.qzeros = qzeros.transpose(1, 0).contiguous()

        return awq_linear

    @torch.no_grad()
    def forward(self, x):
        inputs = x
        if inputs.numel() / inputs.shape[-1] < 8:
            out = awq_v2_ext.gemv_forward_cuda_decode(
                inputs,
                self.qweight,
                self.scales,
                self.qzeros,
                inputs.numel() // inputs.shape[-1],
                self.out_features,
                self.in_features,
                self.group_size,
            )
        else:
            out = awq_v2_ext.gemm_forward_cuda_prefill(
                inputs, self.qweight, self.scales, self.qzeros
            )
        out = out + self.bias if self.bias is not None else out

        return out