stream_gen.py 6.02 KB
Newer Older
Haotian Tang's avatar
Haotian Tang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import torch
import gc
import time

from transformers.generation.logits_process import (
    LogitsProcessorList,
    RepetitionPenaltyLogitsProcessor,
    TemperatureLogitsWarper,
    TopKLogitsWarper,
    TopPLogitsWarper,
)

context_tokens = 0
context_time = 0.0
total_tokens = 0
generation_time_list = []

def prepare_logits_processor(
    temperature: float, repetition_penalty: float, top_p: float, top_k: int
) -> LogitsProcessorList:
    processor_list = LogitsProcessorList()
    # TemperatureLogitsWarper doesn't accept 0.0, 1.0 makes it a no-op so we skip two cases.
    if temperature >= 1e-5 and temperature != 1.0:
        processor_list.append(TemperatureLogitsWarper(temperature))
    if repetition_penalty > 1.0:
        processor_list.append(RepetitionPenaltyLogitsProcessor(repetition_penalty))
    if 1e-8 <= top_p < 1.0:
        processor_list.append(TopPLogitsWarper(top_p))
    if top_k > 0:
        processor_list.append(TopKLogitsWarper(top_k))
    return processor_list

33
34
35
36
37
38
39
40
def sanitize_tensor(tensor: torch.Tensor):
    if tensor.dtype == torch.float16:
        replacement_value = 65504
    elif tensor.dtype == torch.float32:
        replacement_value = 1e20
    else:
        return tensor
    
41
    # Replace positive infinity with a large finite number
42
    tensor[tensor == float('inf')] = replacement_value
43
    # Replace negative infinity with a small finite number
44
    tensor[tensor == float('-inf')] = -replacement_value
45
46
    # Replace NaNs with zero
    tensor[torch.isnan(tensor)] = 0.0
47

48
    return tensor
Haotian Tang's avatar
Haotian Tang committed
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

@torch.inference_mode()
def StreamGenerator(model,
                    tokenizer,
                    input : str,
                    gen_params : dict,
                    device: str = "cuda:0",
                    stream_interval: int = 2,
                    echo: bool = False,
                    stop_token_ids = []
):
    input_ids = tokenizer(input).input_ids
    input_echo_len = len(input_ids)
    # print(input_ids)
    output_ids = list(input_ids)
    len_input = len(input)

    if gen_params.top_k <= 0:
        top_k = gen_params.n_vocab
    else:
        top_k = gen_params.top_k
    logits_processor = prepare_logits_processor(
        gen_params.temp, gen_params.repeat_penalty, gen_params.top_p, top_k
    )
    
    past_key_values = out = None
    stop_token_ids.append(tokenizer.eos_token_id)
    max_new_tokens = gen_params.n_predict
    for i in range(max_new_tokens):
        torch.cuda.synchronize()
        t_st = time.time()

        if i == 0:  # Context Stage
            out = model(torch.as_tensor([input_ids], device=device), use_cache=True)
            logits = out.logits
            past_key_values = out.past_key_values
        else:
            out = model(
                input_ids=torch.as_tensor([[token]], device=device),
                use_cache=True,
                past_key_values=past_key_values,
            )
            logits = out.logits
            past_key_values = out.past_key_values

        # Processing the logits
        if logits_processor:
            if gen_params.repeat_penalty > 1.0:
                tmp_output_ids = torch.as_tensor([output_ids], device=logits.device)
            else:
                tmp_output_ids = None
            last_token_logits = logits_processor(tmp_output_ids, logits[:, -1, :])[0]
101
            last_token_logits = sanitize_tensor(last_token_logits)
Haotian Tang's avatar
Haotian Tang committed
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
        else:
            last_token_logits = logits[0, -1, :]
        if gen_params.temp < 1e-5 or gen_params.top_p < 1e-8:  # greedy
            token = int(torch.argmax(last_token_logits))
        else:
            probs = torch.softmax(last_token_logits, dim=-1)
            token = int(torch.multinomial(probs, num_samples=1))
        output_ids.append(token)

        torch.cuda.synchronize()
        t_ed = time.time()

        global context_time
        global context_tokens
        global total_tokens
        global generation_time_list
        if i == 0:
            context_time = t_ed - t_st
            context_tokens = logits.shape[1]
            generation_time_list = []
        else:
            generation_time_list.append(t_ed-t_st)
        
        if token in stop_token_ids:
            stopped = True
        else:
            stopped = False 


        if i % stream_interval == 0 or i == max_new_tokens - 1 or stopped:
            if echo:
                tmp_output_ids = output_ids
                rfind_start = len_input
            else:
                tmp_output_ids = output_ids[input_echo_len:]
                rfind_start = 0

            output = tokenizer.decode(
                tmp_output_ids,
                skip_special_tokens=True,
                spaces_between_special_tokens=False,
            )

            partially_stopped = False

            # prevent yielding partial stop sequence
            if not partially_stopped:
                yield {
                    "text": output,
                    "usage": {
                        "prompt_tokens": input_echo_len,
                        "completion_tokens": i,
                        "total_tokens": input_echo_len + i,
                    },
                    "finish_reason": None,
                    "timing": None,
                }

        if stopped:
            break

    # finish stream event, which contains finish reason
    if i == max_new_tokens - 1:
        finish_reason = "length"
    elif stopped:
        finish_reason = "stop"
    else:
        finish_reason = None

    total_tokens = (context_tokens + len(generation_time_list))
    yield {
        "text": output,
        "usage": {
            "prompt_tokens": input_echo_len,
            "completion_tokens": i,
            "total_tokens": input_echo_len + i,
        },
        "finish_reason": finish_reason,
        "timing":{
            "context_tokens": context_tokens,
            "context_time": context_time,
            "total_tokens": total_tokens,
            "generation_time_list": generation_time_list,
        }
    }

    del past_key_values, out
    gc.collect()
    torch.cuda.empty_cache()

    # return context_tokens, context_time, total_tokens, generation_time_list