lm_eval_adaptor.py 3.56 KB
Newer Older
Ji Lin's avatar
Ji Lin committed
1
2
3
4
import transformers
import torch
from lm_eval.base import BaseLM
import fnmatch
5
import logging
Ji Lin's avatar
Ji Lin committed
6
7
8

class LMEvalAdaptor(BaseLM):

9
    def __init__(self, model_name, model, tokenizer, device, batch_size=1, max_length=-1):
Ji Lin's avatar
Ji Lin committed
10
11
12
13
14
        super().__init__()

        assert isinstance(batch_size, int)

        self.model_name = model_name
15
        self.model = model.to(device)
Ji Lin's avatar
Ji Lin committed
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
        self.model.eval()

        self.tokenizer = tokenizer

        # assert isinstance(self.tokenizer, (
        #     transformers.GPT2Tokenizer, transformers.GPT2TokenizerFast,
        #     transformers.T5Tokenizer, transformers.T5TokenizerFast,
        # )), "this tokenizer has not been checked for compatibility yet!"

        self.vocab_size = self.tokenizer.vocab_size

        self._batch_size = batch_size

        self._max_length = max_length

    @property
    def eot_token_id(self):
        # we use EOT because end of *text* is more accurate for what we're doing than end of *sentence*
        return self.tokenizer.eos_token_id

    @property
    def max_length(self):
        if self._max_length != -1:
            return self._max_length
        if hasattr(self.model.config, 'n_ctx'):
            return self.model.config.n_ctx
        elif hasattr(self.model.config, 'max_position_embeddings'):
            return self.model.config.max_position_embeddings
        elif hasattr(self.model.config, 'n_positions'):
            return self.model.config.n_positions
        elif 'bloom' in self.model_name:
            return 2048
        elif 'llama' in self.model_name:
            return 2048  # TODO: did not check this
50
51
52
53
        elif 'mpt' in self.model_name:
            return 2048
        elif 'falcon' in self.model_name:
            return 2048
Ji Lin's avatar
Ji Lin committed
54
        else:
55
            logging.debug(self.model.config)
Ji Lin's avatar
Ji Lin committed
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
            raise NotImplementedError

    @property
    def max_gen_toks(self):
        return 256

    @property
    def batch_size(self):
        return self._batch_size

    @property
    def device(self):
        return "cuda"

    def tok_encode(self, string: str):
        return self.tokenizer.encode(string, add_special_tokens=False)

    def tok_decode(self, tokens):
        return self.tokenizer.decode(tokens)

    def _model_call(self, inps):
        """
        inps: a torch tensor of shape [batch, sequence]
        the size of sequence may vary from call to call

        returns: a torch tensor of shape [batch, sequence, vocab] with the
        logits returned from the model
        """
        with torch.no_grad():
            if isinstance(self.model, transformers.models.t5.modeling_t5.T5ForConditionalGeneration):
                dec_inps = torch.cat(
                    [
                        torch.tensor(
                            self.model.generation_config.decoder_start_token_id,
                        )
                        .tile(len(inps), 1)
                        .to(inps),
                        inps,
                    ],
                    dim=1,
                )
             
                kwargs = {"decoder_input_ids": dec_inps,}
            else:
                kwargs = {}
            out = self.model(inps, **kwargs)[0]
            if "opt" in self.model_name:  # there are a few extra tokens in opt, which we should omit
                return out[:, :, :50257]
            else:
                return out  # [:, :, :self.tokenizer.vocab_size]

    def _model_generate(self, context, max_length, eos_token_id):
        return self.model.generate(
            context,
            max_length=max_length,
            eos_token_id=eos_token_id,
            do_sample=False
        )