fused_mlp.py 3.09 KB
Newer Older
Haotian Tang's avatar
Haotian Tang committed
1
2
3
4
5
6
7
8
9
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.cuda.amp import custom_bwd, custom_fwd
from transformers.models.llama.modeling_llama import LlamaMLP

import awq_inference_engine

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
class QuantMPTMLP(nn.Module):
    def __init__(
        self,
        up_proj,
        act,
        down_proj
    ):
        super().__init__()
        self.register_buffer('up_proj_qweight', up_proj.qweight)
        self.register_buffer('up_proj_scales', up_proj.scales)
        self.register_buffer('up_proj_qzeros', up_proj.qzeros)

        self.up_proj = up_proj
        self.act = act
        self.down_proj = down_proj
    
    def forward(self, x: torch.Tensor):
        x = x.reshape(-1, x.shape[-1])
        x = awq_inference_engine.gemm_forward_cuda(x, self.up_proj_qweight, self.up_proj_scales, self.up_proj_qzeros, 8)

        return self.down_proj(self.act(x))
Haotian Tang's avatar
Haotian Tang committed
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

class QuantLlamaMLP(nn.Module):

    def __init__(
        self,
        gate_proj,
        down_proj,
        up_proj,
    ):
        super().__init__()
        self.register_buffer('gate_proj_qweight', gate_proj.qweight)
        self.register_buffer('gate_proj_scales', gate_proj.scales)
        self.register_buffer('gate_proj_qzeros', gate_proj.qzeros)
        self.register_buffer('up_proj_qweight', up_proj.qweight)
        self.register_buffer('up_proj_scales', up_proj.scales)
        self.register_buffer('up_proj_qzeros', up_proj.qzeros)

        self.in_features = gate_proj.in_features
        self.intermediate_size = gate_proj.out_features
        self.out_features = down_proj.out_features
        self.w_bit = gate_proj.w_bit
        self.down_proj = down_proj

    def forward(self, x):
        return self.down_proj(self.our_llama_mlp(x))
    
    def our_llama_mlp(self, x):
        out_shape = x.shape[:-1] + (self.intermediate_size, )
        x = x.reshape(-1, x.shape[-1])
        gate_output = awq_inference_engine.gemm_forward_cuda(
            x, self.gate_proj_qweight, self.gate_proj_scales, self.gate_proj_qzeros, 8
        )
        gate_output = F.silu(gate_output)
        up_output = awq_inference_engine.gemm_forward_cuda(
            x, self.up_proj_qweight, self.up_proj_scales, self.up_proj_qzeros, 8
        )
        c = gate_output * up_output
        c = c.reshape(out_shape)
        return c


def make_fused_mlp(m, parent_name=''):
    if not hasattr(make_fused_mlp, "called"):
        make_fused_mlp.called = True
    """
    Replace all LlamaMLP modules with QuantLlamaMLP modules, which fuses many of the operations.
    """
    if isinstance(m, LlamaMLP):
        return QuantLlamaMLP(m.gate_proj, m.down_proj, m.up_proj)
80
81
    elif "mptmlp" in str(m.__class__).lower():
        return QuantMPTMLP(m.up_proj, m.act, m.down_proj)
Haotian Tang's avatar
Haotian Tang committed
82
83
84
85
86
87

    for name, child in m.named_children():
        child = make_fused_mlp(child, parent_name=f"{parent_name}.{name}")

        if isinstance(child, QuantLlamaMLP):
            setattr(m, name, child)
88
89
90
91
        elif isinstance(child, QuantMPTMLP):
            setattr(m, name, child)

    return m