calib_data.py 1.3 KB
Newer Older
Ji Lin's avatar
Ji Lin committed
1
2
import torch
from datasets import load_dataset
3
from datasets.builder import DatasetGenerationError
Ji Lin's avatar
Ji Lin committed
4
5
6

def get_calib_dataset(data="pileval", tokenizer=None, n_samples=512, block_size=512):
    if data == "pileval":
7
8
9
10
11
        try:
            dataset = load_dataset("json", data_files="https://the-eye.eu/public/AI/pile/val.jsonl.zst", split="train")
        except DatasetGenerationError:
            print('The Pile URL is down, using wikitext-103-raw-v1 instead')
            dataset = load_dataset('wikitext', "wikitext-103-raw-v1", split="train")
Ji Lin's avatar
Ji Lin committed
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
    else:
        raise NotImplementedError
    dataset = dataset.shuffle(seed=42)
    samples = []
    n_run = 0
    for data in dataset:
        line = data["text"]
        line = line.strip()
        line_encoded = tokenizer.encode(line)
        if len(line_encoded) > 512:
            continue
        sample = torch.tensor([line_encoded])
        if sample.numel() == 0:
            continue
        samples.append(sample)
        n_run += 1
        if n_run == n_samples:
            break
    # now concatenate all samples and split according to block size
    cat_samples = torch.cat(samples, dim=1)
    n_split = cat_samples.shape[1] // block_size
    print(f" * Split into {n_split} blocks")
    return [cat_samples[:, i*block_size:(i+1)*block_size] for i in range(n_split)]