"vscode:/vscode.git/clone" did not exist on "a62b93cd7409510fb13447bd6cb45258a0b66fb2"
calib_data.py 1 KB
Newer Older
Ji Lin's avatar
Ji Lin committed
1
2
3
4
5
import torch
from datasets import load_dataset

def get_calib_dataset(data="pileval", tokenizer=None, n_samples=512, block_size=512):
    if data == "pileval":
6
        dataset = load_dataset("mit-han-lab/pile-val-backup", split="validation")
Ji Lin's avatar
Ji Lin committed
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
    else:
        raise NotImplementedError
    dataset = dataset.shuffle(seed=42)
    samples = []
    n_run = 0
    for data in dataset:
        line = data["text"]
        line = line.strip()
        line_encoded = tokenizer.encode(line)
        if len(line_encoded) > 512:
            continue
        sample = torch.tensor([line_encoded])
        if sample.numel() == 0:
            continue
        samples.append(sample)
        n_run += 1
        if n_run == n_samples:
            break
    # now concatenate all samples and split according to block size
    cat_samples = torch.cat(samples, dim=1)
    n_split = cat_samples.shape[1] // block_size
    print(f" * Split into {n_split} blocks")
    return [cat_samples[:, i*block_size:(i+1)*block_size] for i in range(n_split)]