llava.py 4.54 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import tqdm
from typing import List, Tuple
from .base import BaseAWQForCausalLM
from awq.utils.fused_utils import fuse_qkv
from awq.modules.fused.block import LlamaLikeBlock
from awq.modules.fused.model import LlamaLikeModel
from transformers.models.llama.modeling_llama import (
    LlamaDecoderLayer as OldLlamaDecoderLayer,
)
from transformers.models.llava.modeling_llava import LlavaForConditionalGeneration as OldLlavaForConditionalGeneration
from awq.modules.fused.mlp import QuantFusedMLP
from awq.modules.fused.norm import FasterTransformerRMSNorm

class LlavaAWQForCausalLM(BaseAWQForCausalLM):
    layer_type = "LlamaDecoderLayer"
    max_new_tokens_key = "max_position_embeddings"

    @staticmethod
    def fuse_layers(model: OldLlavaForConditionalGeneration):
        fuser = LlavaFuser(model)
        fuser.fuse_transformer()

    @staticmethod
    def get_model_layers(model: OldLlavaForConditionalGeneration):
        return model.language_model.model.layers
    
    @staticmethod
    def get_act_for_scaling(module: OldLlamaDecoderLayer):
        return dict(
            is_scalable=False
        )
    
    @staticmethod
    def move_embed(model: OldLlavaForConditionalGeneration, device: str):
        model.language_model.model.embed_tokens = model.get_input_embeddings().to(device)
    
    @staticmethod
    def get_layers_for_scaling(module: OldLlamaDecoderLayer, input_feat, module_kwargs):
        layers = []

        # attention input
        layers.append(dict(
            prev_op=module.input_layernorm,
            layers=[module.self_attn.q_proj,
                    module.self_attn.k_proj, module.self_attn.v_proj],
            inp=input_feat['self_attn.q_proj'],
            module2inspect=module.self_attn, kwargs=module_kwargs,
        ))

        # attention out
        # Please refer to https://github.com/mit-han-lab/llm-awq/pull/67#issue-1850622696
        if module.self_attn.v_proj.weight.shape == module.self_attn.o_proj.weight.shape:
            layers.append(dict(
                prev_op=module.self_attn.v_proj,
                layers=[module.self_attn.o_proj],
                inp=input_feat['self_attn.o_proj'],
            ))
        
        # linear 1
        layers.append(dict(
            prev_op=module.post_attention_layernorm,
            layers=[module.mlp.gate_proj, module.mlp.up_proj],
            inp=input_feat['mlp.gate_proj'],
            module2inspect=module.mlp,
        ))

        # linear 2
        layers.append(dict(
            prev_op=module.mlp.up_proj,
            layers=[module.mlp.down_proj],
            inp=input_feat['mlp.down_proj'],
        ))

        return layers


class LlavaFuser:
    def __init__(self, model: OldLlavaForConditionalGeneration):
        self.model = model.language_model

        self.llama_blocks: List[Tuple[str, OldLlamaDecoderLayer]] = [
            (name, module) for name, module in self.model.named_modules()
            if 'LlamaDecoderLayer'.lower() in module.__class__.__name__.lower()
        ]
    
    def fuse_transformer(self):
        blocks = []

        module: OldLlamaDecoderLayer
        for module in tqdm.tqdm(self.model.model.layers, desc="Fusing layers..."):
            device = next(iter(module.state_dict().values())).device
            qkv = fuse_qkv(
                module,
                module.self_attn.q_proj,
                module.self_attn.k_proj,
                module.self_attn.v_proj
            )
            mlp = QuantFusedMLP(
                module.mlp.gate_proj,
                module.mlp.down_proj,
                module.mlp.up_proj
            )
            norm_1 = FasterTransformerRMSNorm(
                module.input_layernorm.weight,
                module.input_layernorm.variance_epsilon
            )
            norm_2 = FasterTransformerRMSNorm(
                module.post_attention_layernorm.weight,
                module.post_attention_layernorm.variance_epsilon
            )
            blocks.append(LlamaLikeBlock(
                hidden_size=self.model.config.hidden_size,
                n_heads=self.model.config.num_attention_heads,
                n_kv_heads=self.model.config.num_key_value_heads,
                qkv_layer=qkv,
                o_proj=module.self_attn.o_proj,
                mlp=mlp,
                norm_1=norm_1,
                norm_2=norm_2,
                dev=device,
                max_seq_len=self.model.config.max_new_tokens
            ))
        
        self.model = LlamaLikeModel(
            self.model.config.vocab_size,
            blocks,
            self.model.model.embed_tokens,
            self.model.model.norm,
        )