quantizer.py 13 KB
Newer Older
Ji Lin's avatar
Ji Lin committed
1
import torch
Casper's avatar
Casper committed
2
3
4
5
6
7
8
import logging
import functools
import torch.nn as nn
from tqdm import tqdm
from collections import defaultdict
from awq.utils.utils import clear_memory
from awq.utils.calib_data import get_calib_dataset
Casper Hansen's avatar
Casper Hansen committed
9
from awq.quantize.scale import apply_scale, apply_clip
Casper's avatar
Casper committed
10
11
12
13
14
from awq.modules.linear import WQLinear_GEMM, WQLinear_GEMV
from awq.utils.module import append_str_prefix, get_op_name, get_named_linears, set_op_by_name


class AwqQuantizer:
15
    def __init__(self, awq_model, model, tokenizer, w_bit, group_size, version, 
Casper Hansen's avatar
Casper Hansen committed
16
                       calib_data, split, text_column) -> None:
Casper Hansen's avatar
Casper Hansen committed
17
        self.awq_model = awq_model
Casper's avatar
Casper committed
18
19
20
21
22
23
24
25
        self.model = model
        self.tokenizer = tokenizer
        self.w_bit = w_bit
        self.group_size = group_size
        self.version = version
        self.calib_data = calib_data
        self.split = split
        self.text_column = text_column
Casper Hansen's avatar
Casper Hansen committed
26
        self.modules, self.module_kwargs, self.inps = self.init_quant()
27
    
Casper's avatar
Casper committed
28
29
30
31
32
33
34
35
    def pseudo_quantize_tensor(self, w: torch.Tensor, get_scale_zp=False):
        org_w_shape = w.shape
        if self.group_size > 0:
            assert org_w_shape[-1] % self.group_size == 0
            w = w.reshape(-1, self.group_size)
        assert w.dim() == 2

        # zero point quantization
Ji Lin's avatar
Ji Lin committed
36
37
        max_val = w.amax(dim=1, keepdim=True)
        min_val = w.amin(dim=1, keepdim=True)
Casper's avatar
Casper committed
38
        max_int = 2 ** self.w_bit - 1
Ji Lin's avatar
Ji Lin committed
39
40
41
        min_int = 0
        scales = (max_val - min_val).clamp(min=1e-5) / max_int
        zeros = (-torch.round(min_val / scales)).clamp_(min_int, max_int)
Casper's avatar
Casper committed
42
43
44
45
46
47
48
49
50
51
52
53
54
55

        assert torch.isnan(scales).sum() == 0
        assert torch.isnan(w).sum() == 0

        w = (torch.clamp(torch.round(w / scales) + zeros, min_int, max_int) - zeros) * scales
        assert torch.isnan(w).sum() == 0

        w = w.reshape(org_w_shape)

        if get_scale_zp:
            return w, scales.view(w.shape[0], -1), zeros.view(w.shape[0], -1)
        else:
            return w
    
Casper Hansen's avatar
Casper Hansen committed
56
57
    def quantize(self):
        for i in tqdm(range(len(self.modules)), desc="AWQ"):
Casper's avatar
Casper committed
58
59
60
61
62
63
64
            # [STEP 1]: Get layer, extract linear modules, extract input features
            self.modules[i] = self.modules[i].cuda()
            named_linears = get_named_linears(self.modules[i])
            input_feat = self._get_input_feat(self.modules[i], named_linears)
            clear_memory()

            # [STEP 2]: Compute and apply scale list
Casper Hansen's avatar
Casper Hansen committed
65
            module_config: list[dict] = self.awq_model.get_layers_for_scaling(
Casper's avatar
Casper committed
66
67
                self.modules[i], input_feat, self.module_kwargs
            )
Casper Hansen's avatar
Casper Hansen committed
68
            scales_list = [self._search_best_scale(self.modules[i], **layer) for layer in module_config]
Casper's avatar
Casper committed
69
70
71
72
            apply_scale(self.modules[i], scales_list, input_feat_dict=input_feat)
            scales_list = append_str_prefix(scales_list, get_op_name(self.model, self.modules[i]) + ".")

            # [STEP 3]: Compute and apply clipping list
Casper Hansen's avatar
Casper Hansen committed
73
74
75
            clip_list = self._search_best_clip(self.modules[i], named_linears, input_feat)
            apply_clip(self.modules[i], clip_list)
            clip_list = append_str_prefix(clip_list, get_op_name(self.model, self.modules[i]) + ".")
Casper's avatar
Casper committed
76
77

            # [STEP 4]: Quantize weights
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
            self._apply_quant(self.modules[i], named_linears)
            clear_memory()
    
    def _apply_quant(self, module, named_linears: dict[str, nn.Linear]):
        for name, linear_layer in named_linears.items():
            # NOTE: small regression in perplexity if linear layer uses .cpu().float()
            linear_layer = linear_layer.cuda().half()

            linear_layer.weight.data, scales, zeros = self.pseudo_quantize_tensor(
                linear_layer.weight.data, 
                get_scale_zp=True
            )

            if self.version == 'GEMM':
                scales = scales.t().contiguous()
                zeros = zeros.t().contiguous()
                q_linear_module = WQLinear_GEMM

            elif self.version  == 'GEMV':
                q_linear_module = WQLinear_GEMV
Casper's avatar
Casper committed
98
            
99
100
101
102
103
104
105
106
107
108
109
110
            q_linear = q_linear_module.from_linear(
                linear=linear_layer,
                w_bit=self.w_bit,
                group_size=self.group_size,
                init_only=False,
                scales=scales,
                zeros=zeros
            )

            linear_layer.cpu()
            q_linear.to(next(module.parameters()).device)
            set_op_by_name(module, name, q_linear)
Casper's avatar
Casper committed
111
112
113
            clear_memory()

    @torch.no_grad()
Casper Hansen's avatar
Casper Hansen committed
114
115
116
117
118
119
120
121
    def _search_best_scale(self, module, prev_op, layers: list[nn.Linear], inp: torch.Tensor, module2inspect=None, kwargs={}):
        if module2inspect is None:
            assert len(layers) == 1
            module2inspect = layers[0]
        
        if "use_cache" in kwargs:
            kwargs.pop("use_cache")
        
Casper's avatar
Casper committed
122
        # Put x on the right device
Casper Hansen's avatar
Casper Hansen committed
123
        inp = inp.to(next(module2inspect.parameters()).device)
Casper's avatar
Casper committed
124
125

        # [STEP 1]: Compute maximum of weight
Casper Hansen's avatar
Casper Hansen committed
126
127
        weight = torch.cat([_m.weight for _m in layers], dim=0)
        org_shape = weight.shape
Casper's avatar
Casper committed
128
        weight = weight.view(-1, self.group_size)
Casper Hansen's avatar
Casper Hansen committed
129
130
131
        w_scale = weight.abs() / weight.abs().amax(dim=1, keepdim=True)
        w_scale = w_scale.view(org_shape)
        w_max = w_scale.mean(0)
Casper's avatar
Casper committed
132
133
134
        clear_memory(weight)

        # [STEP 2]: Compute maximum of x
Casper Hansen's avatar
Casper Hansen committed
135
        x_max = inp.abs().view(-1, inp.shape[-1]).mean(0)
Casper's avatar
Casper committed
136

Casper Hansen's avatar
Casper Hansen committed
137
        # [STEP 3]: Compute output of module
Casper's avatar
Casper committed
138
        with torch.no_grad():
139
140
141
            fp16_output = module2inspect(inp, **kwargs)
            if isinstance(fp16_output, tuple):
                fp16_output = fp16_output[0]
Casper's avatar
Casper committed
142
143
144
        
        # [STEP 4]: Compute loss
        best_scales = self._compute_best_scale(
Casper Hansen's avatar
Casper Hansen committed
145
            inp, w_max, x_max, module2inspect,
146
            layers, fp16_output, kwargs
Casper's avatar
Casper committed
147
148
        )
        
Casper Hansen's avatar
Casper Hansen committed
149
        return (get_op_name(module, prev_op), tuple([get_op_name(module, m) for m in layers]), best_scales)
Casper's avatar
Casper committed
150

151
152
    def _compute_best_scale(self, x, w_max, x_max, module2inspect, linears2scale: list[nn.Linear], 
                                  fp16_output, kwargs={}):
Casper's avatar
Casper committed
153
154
155
        """
        Compute loss and select best scales

Casper's avatar
Casper committed
156
        L(s) = || Q(W * s) (s^-1 * X) - W * X ||
Casper's avatar
Casper committed
157
158
159
160
161
162
163
164
165
166
167
        Q: weight quantization function | pseudo_quantize_tensor(W * s)
        X: inputs from calib dataset    | X
        W: original weights in FP16     | layer
        s: per channel scaling factor   | s^-1 * X
        """
        n_grid = 20
        history = []
        best_ratio = -1
        best_scales = None
        best_error = float('inf')

Casper Hansen's avatar
Casper Hansen committed
168
        org_sd = {k: v.cpu() for k, v in module2inspect.state_dict().items()}
Casper's avatar
Casper committed
169
170
171
172
173
        
        device = x.device
        x_max = x_max.view(-1).to(device)
        w_max = w_max.view(-1).to(device)
        
Casper's avatar
Casper committed
174
175
        for ratio in range(n_grid):
            # create new scales
Casper's avatar
Casper committed
176
            ratio = ratio / n_grid
177

Casper Hansen's avatar
Casper Hansen committed
178
            # NOTE: s^-1 * x is fused here, according to paper
Casper's avatar
Casper committed
179
            scales = (x_max.pow(ratio) / w_max.pow(1-ratio)).clamp(min=1e-4)
Casper's avatar
Casper committed
180
            scales = scales / (scales.max() * scales.min()).sqrt()
Casper's avatar
Casper committed
181
            scales_view = scales.view(1, -1).to(device)
182

Casper Hansen's avatar
Casper Hansen committed
183
            # Q(W * s)
Casper's avatar
Casper committed
184
            for fc in linears2scale:
Casper's avatar
Casper committed
185
186
                fc.weight.mul_(scales_view)
                fc.weight.data = self.pseudo_quantize_tensor(fc.weight.data) / scales_view
Casper's avatar
Casper committed
187

188
189
190
191
192
            # W * X
            int_w_output = module2inspect(x, **kwargs)
            if isinstance(int_w_output, tuple):
                int_w_output = int_w_output[0]
            
Casper Hansen's avatar
Casper Hansen committed
193
194
            # compute mean squared error (L2 norm)
            loss = (fp16_output - int_w_output).float().pow(2).mean().item() # NOTE: float prevents overflow
Casper's avatar
Casper committed
195
196

            history.append(loss)
Casper's avatar
Casper committed
197
            if loss < best_error:
Casper's avatar
Casper committed
198
199
                best_error = loss
                best_ratio = ratio
Casper's avatar
Casper committed
200
                best_scales = scales.clone()
Casper Hansen's avatar
Casper Hansen committed
201
            module2inspect.load_state_dict(org_sd)
Casper's avatar
Casper committed
202

Casper's avatar
Casper committed
203
204
205
206
207
208
        if best_ratio == -1:
            logging.debug(history)
            raise Exception

        assert torch.isnan(best_scales).sum() == 0, best_scales

Casper Hansen's avatar
Casper Hansen committed
209
        return best_scales.detach().cpu()
Casper's avatar
Casper committed
210

Casper Hansen's avatar
Casper Hansen committed
211
212
213
214
    @torch.no_grad()
    def _search_best_clip(self, layer, named_linears, input_feat):
        clip_list = []
        avoid_clipping = ["q_", "k_", "query", "key", "Wqkv"]
Casper's avatar
Casper committed
215

Casper Hansen's avatar
Casper Hansen committed
216
217
218
219
220
221
222
223
224
225
        for name in named_linears:
            # due to qk bmm, it is hard to clip precisely
            if any([_ in name for _ in avoid_clipping]):
                continue

            named_linears[name].cuda()
            max_val = self._compute_best_clip(named_linears[name].weight, input_feat[name])
            clip_list.append((name, max_val))

            named_linears[name].cpu()
Casper Hansen's avatar
Casper Hansen committed
226
227
        
        return clip_list
Casper Hansen's avatar
Casper Hansen committed
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244

    @torch.no_grad()
    def _compute_best_clip(self, w: torch.Tensor, input_feat: torch.Tensor, n_grid=20, max_shrink=0.5, n_sample_token=512):
        assert w.dim() == 2
        org_w_shape = w.shape
        # w           [co, ci]      -> [co, 1, n_group, group size]
        # input_feat  [n_token, ci] -> [1, n_token, n_group, group size]
        group_size = self.group_size if self.group_size > 0 else w.shape[1]
        input_feat = input_feat.view(-1, input_feat.shape[-1])
        input_feat = input_feat.reshape(1, input_feat.shape[0], -1, group_size)
        input_feat = input_feat[:, 0::input_feat.shape[1] // n_sample_token]
        w = w.reshape(w.shape[0], 1, -1, group_size)

        oc_batch_size = 256 if w.shape[0] % 256 == 0 else 64  # prevent OOM
        assert w.shape[0] % oc_batch_size == 0
        w_all = w
        best_max_val_all = []
Casper's avatar
Casper committed
245

Casper Hansen's avatar
Casper Hansen committed
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
        for i_b in range(w.shape[0] // oc_batch_size):
            w = w_all[i_b * oc_batch_size: (i_b + 1) * oc_batch_size]

            org_max_val = w.abs().amax(dim=-1, keepdim=True)  # co, 1, n_group, 1

            best_max_val = org_max_val.clone()
            min_errs = torch.ones_like(org_max_val) * 1e9
            input_feat = input_feat.to(w.device)
            org_out = (input_feat * w).sum(dim=-1)  # co, n_token, n_group

            for i_s in range(int(max_shrink * n_grid)):
                max_val = org_max_val * (1 - i_s / n_grid)
                min_val = - max_val
                cur_w = torch.clamp(w, min_val, max_val)
                q_w = self.pseudo_quantize_tensor(cur_w)
                cur_out = (input_feat * q_w).sum(dim=-1)

                # co, 1, n_group, 1
                err = (cur_out - org_out).pow(2).mean(dim=1).view(min_errs.shape)
                del cur_w
                del cur_out
                cur_best_idx = err < min_errs
                min_errs[cur_best_idx] = err[cur_best_idx]
                best_max_val[cur_best_idx] = max_val[cur_best_idx]
            best_max_val_all.append(best_max_val)

        best_max_val = torch.cat(best_max_val_all, dim=0)

        clear_memory(input_feat)
        clear_memory(org_out)

        return best_max_val.squeeze(1)

    def init_quant(self, n_samples=128, seqlen=512):
        modules = self.awq_model.get_model_layers(self.model)
Casper's avatar
Casper committed
281
282
283
284
285
286
287
288
289
        samples = get_calib_dataset(
            data=self.calib_data, tokenizer=self.tokenizer, n_samples=n_samples, block_size=seqlen,
            split=self.split, text_column=self.text_column
        )
        samples = torch.cat(samples, dim=0)

        inps = []
        layer_kwargs = {}

Casper Hansen's avatar
Casper Hansen committed
290
291
        modules[0] = modules[0].cuda()
        self.awq_model.move_embed(self.model, "cuda")
Casper's avatar
Casper committed
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
        
        # get input and kwargs to layer 0
        # with_kwargs is only supported in PyTorch 2.0
        # use this Catcher hack for now
        class Catcher(nn.Module):
            def __init__(self, module):
                super().__init__()
                self.module = module

            def forward(self, hijacked_inputs, **kwargs):
                inps.append(hijacked_inputs)
                layer_kwargs.update(kwargs)
                raise ValueError  # early exit to break later inference

        # patch layer 0 to catch input and kwargs
Casper Hansen's avatar
Casper Hansen committed
307
        modules[0] = Catcher(modules[0])
Casper's avatar
Casper committed
308
309
310
311
312
        try:
            self.model(samples.to(next(self.model.parameters()).device))
        except ValueError:  # work with early exit
            pass
        del samples
Casper Hansen's avatar
Casper Hansen committed
313
        modules[0] = modules[0].module  # restore
Casper's avatar
Casper committed
314
315
        inps = inps[0]

Casper Hansen's avatar
Casper Hansen committed
316
317
        modules[0] = modules[0].cpu()
        self.awq_model.move_embed(self.model, "cpu")
Casper's avatar
Casper committed
318
319
320
        
        clear_memory()

Casper Hansen's avatar
Casper Hansen committed
321
        return modules, layer_kwargs, inps
Casper's avatar
Casper committed
322
323
324
325
326
327
328
329
330
331
332
333
334
335
    
    def _get_input_feat(self, layer, named_linears):
        # firstly, get input features of all linear layers
        def cache_input_hook(m, x, y, name, feat_dict):
            x = x[0]
            x = x.detach().cpu()
            feat_dict[name].append(x)

        input_feat = defaultdict(list)
        handles = []
        for name in named_linears:
            handles.append(named_linears[name].register_forward_hook(
                functools.partial(cache_input_hook, name=name,
                                feat_dict=input_feat)))
Casper Hansen's avatar
Casper Hansen committed
336
        self.inps = self.inps.to(next(layer.parameters()).device)  # in case multi-gpu
Casper's avatar
Casper committed
337
        # get output as next layer's input
Casper Hansen's avatar
Casper Hansen committed
338
        self.inps = layer(self.inps, **self.module_kwargs)[0]
Casper's avatar
Casper committed
339
340
341
342
343
344
        for h in handles:
            h.remove()
        # now solve for scaling and clipping
        input_feat = {k: torch.cat(v, dim=0) for k, v in input_feat.items()}
        
        return input_feat