demo.py 6.53 KB
Newer Older
1
import torch
Haotian Tang's avatar
Haotian Tang committed
2
3
import argparse
import numpy as np
4
5
from awq.models import *
from awq.models.auto import AutoAWQForCausalLM
Haotian Tang's avatar
Haotian Tang committed
6
7
from attributedict.collections import AttributeDict
from tinychat.utils.prompt_templates import get_prompter, get_stop_token_ids
8
9
from tinychat.stream_generators import StreamGenerator, FalconStreamGenerator
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig, modeling_utils
Haotian Tang's avatar
Haotian Tang committed
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

import os
os.environ["CUDA_VISIBLE_DEVICES"] = "0"

# opt_params in TinyLLMEngine
gen_params = AttributeDict([
                    ("seed", -1),               # RNG seed
                    ("n_threads", 1),           # TODO: fix this
                    ("n_predict", 512),         # new tokens to predict
                    ("n_parts", -1),            # amount of model parts (-1: determine from model dimensions)
                    ("n_ctx", 512),             # context size
                    ("n_batch", 512),           # batch size for prompt processing (must be >=32 to use BLAS)
                    ("n_keep", 0),              # number of tokens to keep from initial prompt
                    ("n_vocab", 50272),         # vocabulary size

                    # sampling parameters
                    ("logit_bias", dict()),     # logit bias for specific tokens: <int, float>
                    ("top_k", 40),              # <= 0 to use vocab size
                    ("top_p", 0.95),            # 1.0 = disabled
                    ("tfs_z", 1.00),            # 1.0 = disabled
                    ("typical_p", 1.00),        # 1.0 = disabled
                    ("temp", 0.70),             # 1.0 = disabled
                    ("repeat_penalty", 1.10),   # 1.0 = disabled
                    ("repeat_last_n", 64),      # last n tokens to penalize (0 = disable penalty, -1 = context size)
                    ("frequency_penalty", 0.00),# 0.0 = disabled
                    ("presence_penalty", 0.00), # 0.0 = disabled
                    ("mirostat", 0),            # 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
                    ("mirostat_tau", 5.00),     # target entropy
                    ("mirostat_eta", 0.10),     # learning rate
                ])

def stream_output(output_stream):
    print(f"ASSISTANT: ", end="", flush=True)
    pre = 0
    for outputs in output_stream:
        output_text = outputs["text"]
        output_text = output_text.strip().split(" ")
        now = len(output_text) - 1
        if now > pre:
            print(" ".join(output_text[pre:now]), end=" ", flush=True)
            pre = now
    print(" ".join(output_text[pre:]), flush=True)
    if "timing" in outputs and outputs["timing"] is not None:
        timing = outputs["timing"]
        context_tokens = timing["context_tokens"]
        context_time = timing["context_time"]
        total_tokens = timing["total_tokens"]
        generation_time_list = timing["generation_time_list"]
        generation_tokens = len(generation_time_list)
        average_speed = (context_time + np.sum(generation_time_list)) / (context_tokens + generation_tokens)
        print("=" * 50)
        print("Speed of Inference")
        print("-" * 50)
        # print(f"Context Stage    : {context_time/context_tokens * 1000:.2f} ms/token")
        print(f"Generation Stage : {np.average(generation_time_list) * 1000:.2f} ms/token")
        # print(f"Average Speed    : {average_speed * 1000:.2f} ms/token")
        print("=" * 50)
        # print("token num:", total_tokens)
        # print("Model total Time = ", (context_time + np.sum(generation_time_list))*1000, "ms" )
    return " ".join(output_text)

def device_warmup(device:str):
    warm_up = torch.randn((4096,4096)).to(device)
    torch.mm(warm_up,warm_up)

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--model_path', type=str, default='/data/llm/checkpoints/vicuna-hf/vicuna-7b', help='path to the model')
78
    parser.add_argument('--quant_file', type=str, default='awq_model_w4_g128.pt', help='path to the model file')
Haotian Tang's avatar
Haotian Tang committed
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
    parser.add_argument('--precision' , type=str, default='W4A16', help='compute precision')
    parser.add_argument('--device'    , type=str, default='cuda')

    args = parser.parse_args()
    assert args.precision in ["W4A16", "W16A16"], "We only support W4A16/W16A16 now"

    gen_params.n_predict = 512
    gen_params.n_vocab = 32000

    def skip(*args, **kwargs):
        pass
    torch.nn.init.kaiming_uniform_ = skip
    torch.nn.init.kaiming_normal_ = skip
    torch.nn.init.uniform_ = skip
    torch.nn.init.normal_ = skip

    config = AutoConfig.from_pretrained(args.model_path, trust_remote_code=True)
    if "mpt" in config.__class__.__name__.lower():
        # config.init_device="meta"
        tokenizer = AutoTokenizer.from_pretrained(config.tokenizer_name, trust_remote_code=True)
    else:
        tokenizer = AutoTokenizer.from_pretrained(args.model_path, use_fast=False, trust_remote_code=True)
    modeling_utils._init_weights = False
    torch.set_default_dtype(torch.half)
    model = AutoModelForCausalLM.from_config(config, trust_remote_code=True)

    if args.precision == "W4A16":
106
107
        model = AutoAWQForCausalLM.from_quantized(args.model_path, args.quant_file)
        assert model.model_type.lower() in ["llama", "refinedweb", "refinedwebmodel", "mpt"], "We only support llama & falcon & mpt now"
Haotian Tang's avatar
Haotian Tang committed
108
109
110
111
112
113
    else:
        model = AutoModelForCausalLM.from_pretrained(args.model_path, config=config, torch_dtype=torch.float16, trust_remote_code=True).to(args.device)

    # device warm up
    device_warmup(args.device)

114
    if isinstance(model, FalconAWQForCausalLM):
Haotian Tang's avatar
Haotian Tang committed
115
116
117
118
119
        stream_generator = FalconStreamGenerator
    else:
        stream_generator = StreamGenerator

    # Optimize AWQ quantized model
120
    if args.precision == "W4A16" and isinstance(model, LlamaAWQForCausalLM):
Haotian Tang's avatar
Haotian Tang committed
121
        from tinychat.modules import make_quant_norm, make_quant_attn, make_fused_mlp
122
123
124
        make_quant_attn(model.model, args.device)
        make_quant_norm(model.model)
        make_fused_mlp(model.model)
Haotian Tang's avatar
Haotian Tang committed
125

126
127
    model_prompter = get_prompter(model, args.model_path)
    stop_token_ids = get_stop_token_ids(model, args.model_path) 
Haotian Tang's avatar
Haotian Tang committed
128
129
130
131
132
133
134
135
136
137
138
139
    count = 0
    while True:
        # Get input from the user
        input_prompt = input("USER: ")
        if input_prompt == "":
            print("EXIT...")
            break
        model_prompter.insert_prompt(input_prompt)
        output_stream = stream_generator(model, tokenizer, model_prompter.model_input, gen_params, device=args.device, stop_token_ids = stop_token_ids)
        outputs = stream_output(output_stream)    
        model_prompter.update_template(outputs)
        count += 1