llama.py 4.38 KB
Newer Older
Casper's avatar
Casper committed
1
2
import tqdm
from typing import List, Tuple
3
from .base import BaseAWQForCausalLM
Casper's avatar
Casper committed
4
5
6
7
8
9
10
11
12
from awq.utils.fused_utils import fuse_qkv
from awq.modules.fused.block import LlamaLikeBlock
from awq.modules.fused.model import LlamaLikeModel
from transformers.models.llama.modeling_llama import (
    LlamaDecoderLayer as OldLlamaDecoderLayer,
    LlamaForCausalLM as OldLlamaForCausalLM
)
from awq.modules.fused.mlp import QuantLlamaMLP
from awq.modules.fused.norm import FasterTransformerRMSNorm
13
14
15

class LlamaAWQForCausalLM(BaseAWQForCausalLM):
    layer_type = "LlamaDecoderLayer"
16
    max_new_tokens_key = "max_position_embeddings"
17

18
    @staticmethod
Casper's avatar
Casper committed
19
    def fuse_layers(model: OldLlamaForCausalLM):
Casper's avatar
Casper committed
20
        fuser = LlamaFuser(model)
Casper's avatar
Casper committed
21
        fuser.fuse_transformer()
22

23
    @staticmethod
Casper's avatar
Casper committed
24
    def get_model_layers(model: OldLlamaForCausalLM):
25
26
27
        return model.model.layers
    
    @staticmethod
Casper's avatar
Casper committed
28
    def get_act_for_scaling(module: OldLlamaDecoderLayer):
29
30
31
32
33
        return dict(
            is_scalable=False
        )
    
    @staticmethod
Casper's avatar
Casper committed
34
    def move_embed(model: OldLlamaForCausalLM, device: str):
35
36
37
        model.model.embed_tokens = model.model.embed_tokens.to(device)
    
    @staticmethod
Casper's avatar
Casper committed
38
    def get_layers_for_scaling(module: OldLlamaDecoderLayer, input_feat, module_kwargs):
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
        layers = []

        # attention input
        layers.append(dict(
            prev_op=module.input_layernorm,
            layers=[module.self_attn.q_proj,
                    module.self_attn.k_proj, module.self_attn.v_proj],
            inp=input_feat['self_attn.q_proj'],
            module2inspect=module.self_attn, kwargs=module_kwargs,
        ))

        # attention out
        # Please refer to https://github.com/mit-han-lab/llm-awq/pull/67#issue-1850622696
        if module.self_attn.v_proj.weight.shape == module.self_attn.o_proj.weight.shape:
            layers.append(dict(
                prev_op=module.self_attn.v_proj,
                layers=[module.self_attn.o_proj],
                inp=input_feat['self_attn.o_proj'],
            ))
Casper Hansen's avatar
Casper Hansen committed
58
59
        
        # linear 1
60
61
62
63
64
65
        layers.append(dict(
            prev_op=module.post_attention_layernorm,
            layers=[module.mlp.gate_proj, module.mlp.up_proj],
            inp=input_feat['mlp.gate_proj'],
            module2inspect=module.mlp,
        ))
Casper Hansen's avatar
Casper Hansen committed
66
67

        # linear 2
68
69
70
71
72
73
        layers.append(dict(
            prev_op=module.mlp.up_proj,
            layers=[module.mlp.down_proj],
            inp=input_feat['mlp.down_proj'],
        ))

Casper Hansen's avatar
Casper Hansen committed
74
75
76
77
        return layers


class LlamaFuser:
Casper's avatar
Casper committed
78
    def __init__(self, model: OldLlamaForCausalLM):
Casper Hansen's avatar
Casper Hansen committed
79
        self.model = model
Casper Hansen's avatar
Casper Hansen committed
80

Casper's avatar
Casper committed
81
        self.llama_blocks: List[Tuple[str, OldLlamaDecoderLayer]] = [
Casper Hansen's avatar
Casper Hansen committed
82
            (name, module) for name, module in self.model.named_modules()
Casper's avatar
Casper committed
83
            if 'LlamaDecoderLayer'.lower() in module.__class__.__name__.lower()
Casper Hansen's avatar
Casper Hansen committed
84
        ]
Casper Hansen's avatar
Casper Hansen committed
85
    
Casper's avatar
Casper committed
86
87
88
89
90
91
92
93
94
95
96
    def fuse_transformer(self):
        blocks = []

        module: OldLlamaDecoderLayer
        for module in tqdm.tqdm(self.model.model.layers, desc="Fusing layers..."):
            device = next(iter(module.state_dict().values())).device
            qkv = fuse_qkv(
                module,
                module.self_attn.q_proj,
                module.self_attn.k_proj,
                module.self_attn.v_proj
Casper Hansen's avatar
Casper Hansen committed
97
            )
Casper's avatar
Casper committed
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
            mlp = QuantLlamaMLP(
                module.mlp.gate_proj,
                module.mlp.down_proj,
                module.mlp.up_proj
            )
            norm_1 = FasterTransformerRMSNorm(
                module.input_layernorm.weight,
                module.input_layernorm.variance_epsilon
            )
            norm_2 = FasterTransformerRMSNorm(
                module.post_attention_layernorm.weight,
                module.post_attention_layernorm.variance_epsilon
            )
            blocks.append(LlamaLikeBlock(
                hidden_size=self.model.config.hidden_size,
                n_heads=self.model.config.num_attention_heads,
                n_kv_heads=self.model.config.num_key_value_heads,
                qkv_layer=qkv,
                o_proj=module.self_attn.o_proj,
                mlp=mlp,
                norm_1=norm_1,
                norm_2=norm_2,
                dev=device,
                max_seq_len=self.model.config.max_new_tokens
            ))
Casper Hansen's avatar
Casper Hansen committed
123
        
Casper's avatar
Casper committed
124
125
126
127
128
129
        self.model.model = LlamaLikeModel(
            self.model.config.vocab_size,
            blocks,
            self.model.model.embed_tokens,
            self.model.model.norm,
        )