block.py 4.22 KB
Newer Older
1
import os
Casper Hansen's avatar
Casper Hansen committed
2
3
4
import torch.nn as nn
from awq.modules.fused.attn import QuantAttentionFused

5
6
class MPTBlock(nn.Module):
    def __init__(self, hidden_size, n_heads, qkv_layer, o_proj, mpt_mlp, norm_1, norm_2, dev, max_seq_len):
Casper Hansen's avatar
Casper Hansen committed
7
8
        super().__init__()
        self.n_heads = n_heads
Casper Hansen's avatar
Casper Hansen committed
9
        self.n_kv_heads = 0
Casper Hansen's avatar
Casper Hansen committed
10
        self.hidden_size = hidden_size
11
        self.norm_1 = norm_1
Casper Hansen's avatar
Casper Hansen committed
12
13
14
15
        self.attn = QuantAttentionFused(
            hidden_size, self.n_heads, self.n_kv_heads, qkv_layer, o_proj, 
            dev=dev, max_seq_len=max_seq_len, use_alibi=True
        ).to(dev)
16
17
        self.norm_2 = norm_2
        self.ffn = mpt_mlp.to(dev)
Casper Hansen's avatar
Casper Hansen committed
18
19

    def forward(
20
        self, hidden_states, past_key_value, attn_bias=None, attention_mask=None, is_causal=None
Casper Hansen's avatar
Casper Hansen committed
21
22
23
24
25
26
27
28
29
30
31
32
33
    ):
        norm_out = self.norm_1(hidden_states)
        attn_output, _, past_key_value = self.attn.forward(
            hidden_states=norm_out,
            past_key_value=past_key_value,
            attention_mask=attention_mask,
            position_ids=None,
            output_attentions=False,
            use_cache=True
        )

        h = hidden_states + attn_output
        out = h + self.ffn.forward(self.norm_2(h))
34
35
36
        return out, None, past_key_value

class FalconDecoderLayer(nn.Module):
Casper Hansen's avatar
Casper Hansen committed
37
38
    def __init__(self, hidden_size, n_heads, qkv_layer, o_proj, mlp, dev, max_seq_len, 
                       input_layernorm=None, ln_attn=None, ln_mlp=None, new_decoder_arch=True):
39
40
        super().__init__()
        self.n_heads = n_heads
Casper Hansen's avatar
Casper Hansen committed
41
        self.n_kv_heads = 8
42
43
        self.hidden_size = hidden_size
        self.new_decoder_arch = new_decoder_arch
Casper Hansen's avatar
Casper Hansen committed
44
45
46
47
48

        if new_decoder_arch:
            attention_shapes = None
        else:
            attention_shapes = self._get_attention_shapes(n_heads, max_seq_len, self.hidden_size // n_heads)
49
50
51
        
        # TODO: Falcon has ALiBi implemented but which model uses it?
        self.attn = QuantAttentionFused(
Casper Hansen's avatar
Casper Hansen committed
52
            hidden_size, self.n_heads, self.n_kv_heads, qkv_layer, o_proj, 
53
54
55
56
            dev=dev, max_seq_len=max_seq_len, use_alibi=False,
            attention_shapes=attention_shapes
        ).to(dev)
        
57
58
59
60
61
62
63
        if new_decoder_arch:
            self.ln_attn = ln_attn # before attention
            self.ln_mlp = ln_mlp # before mlp
        else:
            self.input_layernorm = input_layernorm # before attention
        
        self.mlp = mlp
64
    
Casper Hansen's avatar
Casper Hansen committed
65
    def _get_attention_shapes(self, n_heads, max_seq_len, head_dim):
66
67
        batch_size = int(os.getenv("AWQ_BATCH_SIZE", "1"))
        
Casper Hansen's avatar
Casper Hansen committed
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
        self.attention_shapes = {
            # following fastertransformer definition
            "cache_v": (batch_size, 1, max_seq_len, head_dim,),
            # 8: pack 8 fp16 in FT, if fp32 then use 4
            "cache_k": (batch_size, 1, head_dim // 8, max_seq_len, 8,),
            "xqkv_view": (n_heads+2, head_dim),
            "xq_slice": lambda xqkv: xqkv[:, :, :-2],
            "xk_slice": lambda xqkv: xqkv[:, :, [-2]],
            "xv_slice": lambda xqkv: xqkv[:, :, [-1]],
            "xq_view": (n_heads, head_dim),
            "xk_view": (1, head_dim),
            "xv_view": (1, head_dim),
            "xk_reshape": (1, head_dim // 8, 8),
            "single_xq_view": (n_heads, head_dim),
            "single_xk_view": (1, head_dim),
            "single_xv_view": (1, head_dim)
        }
85
86

        return self.attention_shapes
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115

    def forward(
        self, hidden_states, past_key_value, attn_bias=None, attention_mask=None, is_causal=None
    ):
        if self.new_decoder_arch:
            layernorm_out = self.ln_attn(hidden_states)
            mlp_layernorm_out = self.ln_mlp(hidden_states)
        else:
            layernorm_out = self.input_layernorm(hidden_states)
        
        attn_output, _, past_key_value = self.attn.forward(
            hidden_states=layernorm_out,
            past_key_value=past_key_value,
            attention_mask=attention_mask,
            position_ids=None,
            output_attentions=False,
            use_cache=True
        )

        h_attn = hidden_states + attn_output

        if self.new_decoder_arch:
            h_mlp = self.mlp.forward(mlp_layernorm_out)
        else:
            h_mlp = self.mlp.forward(layernorm_out)
        
        out = h_attn + h_mlp
        
        return out, None, past_key_value