fused_attn.py 7.16 KB
Newer Older
Haotian Tang's avatar
Haotian Tang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import math
import torch
import torch.nn as nn
from torch.nn import functional as F
from transformers.models.llama.modeling_llama import LlamaAttention, LlamaRotaryEmbedding, apply_rotary_pos_emb 

from awq.quantize.qmodule import WQLinear
import awq_inference_engine


class QuantLlamaRotaryEmbedding(nn.Module):
    def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
        super().__init__()

        self.dim = dim
        self.max_position_embeddings = max_position_embeddings
        self.base = base
        inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
        self.register_buffer("inv_freq", inv_freq)
        # Build here to make `torch.jit.trace` work.
        self._set_cos_sin_cache(
            seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
        )

    def _set_cos_sin_cache(self, seq_len, device, dtype):
        self.max_seq_len_cached = seq_len
        t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)

        freqs = torch.einsum("i,j->ij", t, self.inv_freq)
        # Different from paper, but it uses a different permutation in order to obtain the same calculation
        emb = torch.cat((freqs, freqs), dim=-1)
        
        cos = freqs.cos()
        sin = freqs.sin()
        cache = torch.cat((cos, sin), dim=-1)
        
        # self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
        # self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
        self.register_buffer("cos_sin_cache", cache.half(), persistent=False)
    
    def forward(
        self,
        query: torch.Tensor,
        key: torch.Tensor,
        positions: torch.Tensor,
    ):
        # Apply rotary embedding to the query and key before passing them
        # to the attention op.
        # print(positions.shape, query.shape, key.shape, self.cos_sin_cache.shape)
        query = query.contiguous()
        key = key.contiguous()
        awq_inference_engine.rotary_embedding_neox(
            positions,
            query,
            key,
            self.dim,
            self.cos_sin_cache,
        )
        return query, key

class QuantLlamaAttention(nn.Module):
    """Multi-headed attention from 'Attention Is All You Need' paper"""

    def __init__(
        self,
        hidden_size,
        num_heads,
        qkv_proj,
        o_proj,
        dev
    ):
        super().__init__()
        self.hidden_size = hidden_size
        self.num_heads = num_heads
        self.head_dim = hidden_size // num_heads

        if (self.head_dim * num_heads) != self.hidden_size:
            raise ValueError(f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
                             f" and `num_heads`: {num_heads}).")
        self.qkv_proj = qkv_proj
        self.o_proj = o_proj
        self.rotary_emb = QuantLlamaRotaryEmbedding(self.head_dim, max_position_embeddings=2048, device = dev)

    def forward(self, hidden_states, past_key_value=None, attention_mask=None, position_ids=None, output_attentions=False, use_cache=False):
        """Input shape: Batch x Time x Channel"""

        bsz, q_len, _ = hidden_states.size()

        qkv_states = self.qkv_proj(hidden_states)
        qkv_states = qkv_states.view(bsz, q_len, 3, self.num_heads, self.head_dim)

        # This updates the query and key states in-place, saving VRAM.
        query_states, key_states, value_states = torch.split(qkv_states, 1, dim=2)
        query_states, key_states = self.rotary_emb(query_states, key_states, position_ids)
        
        del qkv_states
        query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
        key_states = key_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
        value_states = value_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)

        is_causal = past_key_value is None

        kv_seq_len = q_len
        if past_key_value is not None:
            kv_seq_len += past_key_value[0].shape[-2]
        
        value_states = value_states.to("cuda:0")

        if past_key_value is not None:
            # reuse k, v, self_attention
            key_states = torch.cat([past_key_value[0], key_states], dim=2)
            value_states = torch.cat([past_key_value[1], value_states], dim=2)

        if use_cache:
            # Since qkv_proj is fused, query_states etc will hold a reference to the original qkv_states tensor
            # which can cause excessive memory usage by the cache. `contiguous` is a convenient way to workaround this.
            key_states = key_states.contiguous()
            value_states = value_states.contiguous()
            query_states = query_states.contiguous()

        past_key_value = (key_states, value_states) if use_cache else None

        # with torch.backends.cuda.sdp_kernel(enable_math=False):
        attn_output = F.scaled_dot_product_attention(query_states, key_states, value_states, is_causal=is_causal)
        del query_states, key_states, value_states

        attn_output = attn_output.transpose(1, 2).reshape(bsz, q_len, self.hidden_size)
        attn_output = self.o_proj(attn_output)

        return attn_output, None, past_key_value


def make_quant_attn(model, dev):
    """
    Replace all LlamaAttention modules with QuantLlamaAttention modules, fusing the q, k, v projections.
    """

    for name, m in model.named_modules():
        if not isinstance(m, LlamaAttention):
            continue

        q_proj = m.q_proj
        k_proj = m.k_proj
        v_proj = m.v_proj

        qweights = torch.cat([q_proj.qweight, k_proj.qweight, v_proj.qweight], dim=1)
        qzeros = torch.cat([q_proj.qzeros, k_proj.qzeros, v_proj.qzeros], dim=1)
        scales = torch.cat([q_proj.scales, k_proj.scales, v_proj.scales], dim=1)
        # g_idx = torch.cat([q_proj.g_idx, k_proj.g_idx, v_proj.g_idx], dim=0)
        g_idx = None
        bias = torch.cat([q_proj.bias, k_proj.bias, v_proj.bias], dim=0) if q_proj.bias is not None else None

        qkv_layer = WQLinear(q_proj.w_bit, q_proj.group_size, q_proj.in_features, q_proj.out_features + k_proj.out_features + v_proj.out_features, q_proj.bias is not None, q_proj.qweight.device)
        qkv_layer.qweight = qweights
        qkv_layer.qzeros = qzeros
        qkv_layer.scales = scales

        qkv_layer.bias = bias
        # We're dropping the rotary embedding layer m.rotary_emb here. We don't need it in the triton branch.

        attn = QuantLlamaAttention(m.hidden_size, m.num_heads, qkv_layer, m.o_proj, dev)

        if '.' in name:
            parent_name = name.rsplit('.', 1)[0]
            child_name = name[len(parent_name) + 1:]
            parent = model.get_submodule(parent_name)
        else:
            parent_name = ''
            parent = model
            child_name = name

        #print(f"Replacing {name} with quant_attn; parent: {parent_name}, child's name: {child_name}")

        setattr(parent, child_name, attn)