yi.py 3.95 KB
Newer Older
Casper's avatar
Casper committed
1
2
3
4
5
6
import tqdm
from typing import List, Tuple
from .base import BaseAWQForCausalLM
from awq.utils.fused_utils import fuse_qkv
from awq.modules.fused.block import LlamaLikeBlock
from awq.modules.fused.model import LlamaLikeModel
7
from awq.modules.fused.mlp import QuantFusedMLP
Casper's avatar
Casper committed
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
from awq.modules.fused.norm import FasterTransformerRMSNorm

class YiAWQForCausalLM(BaseAWQForCausalLM):
    layer_type = "YiDecoderLayer"
    max_new_tokens_key = "max_position_embeddings"

    @staticmethod
    def fuse_layers(model):
        fuser = YiFuser(model)
        fuser.fuse_transformer()

    @staticmethod
    def get_model_layers(model):
        return model.model.layers
    
    @staticmethod
    def get_act_for_scaling(module):
        return dict(
            is_scalable=False
        )
    
    @staticmethod
    def move_embed(model, device: str):
        model.model.embed_tokens = model.model.embed_tokens.to(device)
    
    @staticmethod
    def get_layers_for_scaling(module, input_feat, module_kwargs):
        layers = []

        # attention input
        layers.append(dict(
            prev_op=module.ln1,
            layers=[module.self_attn.q_proj,
                    module.self_attn.k_proj, module.self_attn.v_proj],
            inp=input_feat['self_attn.q_proj'],
            module2inspect=module.self_attn, kwargs=module_kwargs,
        ))

        # attention out
        # Please refer to https://github.com/mit-han-lab/llm-awq/pull/67#issue-1850622696
        if module.self_attn.v_proj.weight.shape == module.self_attn.o_proj.weight.shape:
            layers.append(dict(
                prev_op=module.self_attn.v_proj,
                layers=[module.self_attn.o_proj],
                inp=input_feat['self_attn.o_proj'],
            ))
        
        # linear 1
        layers.append(dict(
            prev_op=module.ln2,
            layers=[module.mlp.gate_proj, module.mlp.up_proj],
            inp=input_feat['mlp.gate_proj'],
            module2inspect=module.mlp,
        ))

        # linear 2
        layers.append(dict(
            prev_op=module.mlp.up_proj,
            layers=[module.mlp.down_proj],
            inp=input_feat['mlp.down_proj'],
        ))

        return layers


class YiFuser:
    def __init__(self, model):
        self.model = model

        self.yi_blocks: List[Tuple[str, object]] = [
            (name, module) for name, module in self.model.named_modules()
            if 'YiDecoderLayer'.lower() in module.__class__.__name__.lower()
        ]
    
    def fuse_transformer(self):
        blocks = []

        for module in tqdm.tqdm(self.model.model.layers, desc="Fusing layers..."):
            device = next(iter(module.state_dict().values())).device
            qkv = fuse_qkv(
                module,
                module.self_attn.q_proj,
                module.self_attn.k_proj,
                module.self_attn.v_proj
            )
93
            mlp = QuantFusedMLP(
Casper's avatar
Casper committed
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
                module.mlp.gate_proj,
                module.mlp.down_proj,
                module.mlp.up_proj
            )
            norm_1 = FasterTransformerRMSNorm(
                module.ln1.weight,
                module.ln1.variance_epsilon
            )
            norm_2 = FasterTransformerRMSNorm(
                module.ln2.weight,
                module.ln2.variance_epsilon
            )
            blocks.append(LlamaLikeBlock(
                hidden_size=self.model.config.hidden_size,
                n_heads=self.model.config.num_attention_heads,
                n_kv_heads=self.model.config.num_key_value_heads,
                qkv_layer=qkv,
                o_proj=module.self_attn.o_proj,
                mlp=mlp,
                norm_1=norm_1,
                norm_2=norm_2,
                dev=device,
                max_seq_len=self.model.config.max_new_tokens
            ))
        
        self.model.model = LlamaLikeModel(
            self.model.config.vocab_size,
            blocks,
            self.model.model.embed_tokens,
            self.model.model.norm,
        )