block.py 5.21 KB
Newer Older
1
import os
Casper Hansen's avatar
Casper Hansen committed
2
3
4
import torch.nn as nn
from awq.modules.fused.attn import QuantAttentionFused

5
6
class MPTBlock(nn.Module):
    def __init__(self, hidden_size, n_heads, qkv_layer, o_proj, mpt_mlp, norm_1, norm_2, dev, max_seq_len):
Casper Hansen's avatar
Casper Hansen committed
7
8
        super().__init__()
        self.n_heads = n_heads
Casper Hansen's avatar
Casper Hansen committed
9
        self.n_kv_heads = 0
Casper Hansen's avatar
Casper Hansen committed
10
        self.hidden_size = hidden_size
11
        self.norm_1 = norm_1
Casper Hansen's avatar
Casper Hansen committed
12
13
14
15
        self.attn = QuantAttentionFused(
            hidden_size, self.n_heads, self.n_kv_heads, qkv_layer, o_proj, 
            dev=dev, max_seq_len=max_seq_len, use_alibi=True
        ).to(dev)
16
17
        self.norm_2 = norm_2
        self.ffn = mpt_mlp.to(dev)
Casper Hansen's avatar
Casper Hansen committed
18
19

    def forward(
20
        self, hidden_states, past_key_value, attn_bias=None, attention_mask=None, is_causal=None
Casper Hansen's avatar
Casper Hansen committed
21
22
23
24
25
26
27
28
29
30
31
32
33
    ):
        norm_out = self.norm_1(hidden_states)
        attn_output, _, past_key_value = self.attn.forward(
            hidden_states=norm_out,
            past_key_value=past_key_value,
            attention_mask=attention_mask,
            position_ids=None,
            output_attentions=False,
            use_cache=True
        )

        h = hidden_states + attn_output
        out = h + self.ffn.forward(self.norm_2(h))
34
35
36
        return out, None, past_key_value

class FalconDecoderLayer(nn.Module):
Casper Hansen's avatar
Casper Hansen committed
37
38
    def __init__(self, hidden_size, n_heads, qkv_layer, o_proj, mlp, dev, max_seq_len, 
                       input_layernorm=None, ln_attn=None, ln_mlp=None, new_decoder_arch=True):
39
40
        super().__init__()
        self.n_heads = n_heads
Casper Hansen's avatar
Casper Hansen committed
41
        self.n_kv_heads = 8
42
43
        self.hidden_size = hidden_size
        self.new_decoder_arch = new_decoder_arch
44
        attention_shapes = self._get_attention_shapes(n_heads, max_seq_len, self.hidden_size // n_heads, new_decoder_arch)
45
46
47
        
        # TODO: Falcon has ALiBi implemented but which model uses it?
        self.attn = QuantAttentionFused(
Casper Hansen's avatar
Casper Hansen committed
48
            hidden_size, self.n_heads, self.n_kv_heads, qkv_layer, o_proj, 
49
50
51
52
            dev=dev, max_seq_len=max_seq_len, use_alibi=False,
            attention_shapes=attention_shapes
        ).to(dev)
        
53
54
55
56
57
58
59
        if new_decoder_arch:
            self.ln_attn = ln_attn # before attention
            self.ln_mlp = ln_mlp # before mlp
        else:
            self.input_layernorm = input_layernorm # before attention
        
        self.mlp = mlp
60
    
61
62
63
    def _get_attention_shapes(self, n_heads, max_seq_len, head_dim, new_decoder_arch):
        batch_size = int(os.getenv("AWQ_BATCH_SIZE", "1"))
        
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
        if new_decoder_arch:
            kv_heads = 8

            self.attention_shapes = {
                # following fastertransformer definition
                "cache_v": (batch_size, n_heads+(kv_heads*2), max_seq_len, head_dim,),
                # 8: pack 8 fp16 in FT, if fp32 then use 4
                "cache_k": (batch_size, n_heads+(kv_heads*2), head_dim // 8, max_seq_len, 8,),
                "xqkv_view": (-1, n_heads+(kv_heads*2), head_dim),
                "xq_slice": lambda xqkv: xqkv[:, :, :,0],
                "xk_slice": lambda xqkv: xqkv[:, :, :,1],
                "xv_slice": lambda xqkv: xqkv[:, :, :,2],
                "xq_view": (1, head_dim),
                "xk_view": (1, head_dim),
                "xv_view": (1, head_dim),
Casper Hansen's avatar
Casper Hansen committed
79
                "xk_reshape": (1, head_dim // 8, 8),
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
                "single_xq_view": (n_heads, head_dim),
                "single_xk_view": (1, 8, head_dim),
                "single_xv_view": (1, 8, head_dim)
            }
        else:
            self.attention_shapes = {
                # following fastertransformer definition
                "cache_v": (batch_size, 1, max_seq_len, head_dim,),
                # 8: pack 8 fp16 in FT, if fp32 then use 4
                "cache_k": (batch_size, 1, head_dim // 8, max_seq_len, 8,),
                "xqkv_view": (n_heads+2, head_dim),
                "xq_slice": lambda xqkv: xqkv[:, :, :-2],
                "xk_slice": lambda xqkv: xqkv[:, :, [-2]],
                "xv_slice": lambda xqkv: xqkv[:, :, [-1]],
                "xq_view": (n_heads, head_dim),
                "xk_view": (1, head_dim),
                "xv_view": (1, head_dim),
Casper Hansen's avatar
Casper Hansen committed
97
                "xk_reshape": (1, head_dim // 8, 8),
98
99
100
101
                "single_xq_view": (n_heads, head_dim),
                "single_xk_view": (1, head_dim),
                "single_xv_view": (1, head_dim)
            }
102
103

        return self.attention_shapes
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

    def forward(
        self, hidden_states, past_key_value, attn_bias=None, attention_mask=None, is_causal=None
    ):
        if self.new_decoder_arch:
            layernorm_out = self.ln_attn(hidden_states)
            mlp_layernorm_out = self.ln_mlp(hidden_states)
        else:
            layernorm_out = self.input_layernorm(hidden_states)
        
        attn_output, _, past_key_value = self.attn.forward(
            hidden_states=layernorm_out,
            past_key_value=past_key_value,
            attention_mask=attention_mask,
            position_ids=None,
            output_attentions=False,
            use_cache=True
        )

        h_attn = hidden_states + attn_output

        if self.new_decoder_arch:
            h_mlp = self.mlp.forward(mlp_layernorm_out)
        else:
            h_mlp = self.mlp.forward(layernorm_out)
        
        out = h_attn + h_mlp
        
        return out, None, past_key_value