fused_utils.py 5.93 KB
Newer Older
Casper's avatar
Casper committed
1
import torch
2
3
from awq.modules.exllama import WQLinear_Exllama
from awq.modules.exllamav2 import WQLinear_ExllamaV2
Casper's avatar
Casper committed
4
5
from awq.modules.linear import WQLinear_GEMM, WQLinear_GEMV

6
7
8
9
10
11
12
13
def prepare_correct_devices(next_layer, hidden_states, mask):
    hidden_states = hidden_states.to(next_layer.device)

    if mask is not None:
        mask = mask.to(next_layer.device)

    return hidden_states, mask
    
Casper's avatar
Casper committed
14
15
16
17
18
19
def prepare_cache(blocks, seqlen: int) -> int:
    for block in blocks:
        start_pos = block.attn.start_pos
        will_cache_be_exceeded = start_pos + seqlen > block.attn.max_seq_len

        # Reset and avoid retaining state when processing context
Casper's avatar
Casper committed
20
        if seqlen > 1 and (will_cache_be_exceeded or start_pos > 0):
Casper's avatar
Casper committed
21
22
23
24
25
26
            block.attn.start_pos = block.attn.cache.roll_kv_n_steps(start_pos, n=start_pos)
        
        # Slowly roll out old tokens without performance hit if exceeded during decoding 
        elif seqlen == 1 and will_cache_be_exceeded:
            block.attn.start_pos = block.attn.cache.roll_kv_n_steps(start_pos, n=100)

Casper's avatar
Casper committed
27
28
29
30
31
32
33
34
35
def prepare_input_ids(input_ids: torch.Tensor, last_forward_num_tokens: int):
    # NOTE: from transformers 4.35.0, input_ids includes full context during decoding
    num_input_tokens = input_ids.shape[-1]
    num_new_tokens = num_input_tokens

    if num_input_tokens != 1:
        num_new_tokens = num_input_tokens - last_forward_num_tokens
        
        # after context is processed, slice to latest token
Casper's avatar
Casper committed
36
        if num_new_tokens == 1:
Casper's avatar
Casper committed
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
            input_ids = input_ids[:, -1:]

    return input_ids, last_forward_num_tokens + num_new_tokens

def prepare_attention_mask(seqlen, start_pos, device, type_as: torch.Tensor):
    mask = None
    if seqlen > 1:
        mask = torch.full(
            (1, 1, seqlen, seqlen), float("-inf"), device=device
        )
        mask = torch.triu(mask, diagonal=start_pos+ 1).type_as(type_as)
    
    return mask

def fuse_qkv(module, q_proj, k_proj, v_proj):
    bias = torch.cat([q_proj.bias, k_proj.bias, v_proj.bias], dim=0) if q_proj.bias is not None else None

    if isinstance(q_proj, WQLinear_GEMV):
        q_linear = WQLinear_GEMV
56
    elif isinstance(q_proj, WQLinear_GEMM):
Casper's avatar
Casper committed
57
        q_linear = WQLinear_GEMM
58
59
60
61
    elif isinstance(q_proj, WQLinear_Exllama):
        q_linear = WQLinear_Exllama
    else:
        q_linear = WQLinear_ExllamaV2
Casper's avatar
Casper committed
62
63
64
65
66
67
68
69
70
71

    qkv_layer = q_linear(
        q_proj.w_bit,
        q_proj.group_size,
        q_proj.in_features,
        q_proj.out_features + k_proj.out_features + v_proj.out_features,
        q_proj.bias is not None,
        next(iter(module.state_dict().values())).device
    )

72
    if isinstance(q_proj, WQLinear_GEMV):
Casper's avatar
Casper committed
73
74
75
76
        qkv_layer.qweight = torch.cat([q_proj.qweight, k_proj.qweight, v_proj.qweight], dim=0)
        qkv_layer.qzeros = torch.cat([q_proj.qzeros, k_proj.qzeros, v_proj.qzeros], dim=0)
        qkv_layer.scales = torch.cat([q_proj.scales, k_proj.scales, v_proj.scales], dim=0)
        qkv_layer.split_k_iters = q_proj.split_k_iters
77
78
79
80
81
82
83
84
85
    elif isinstance(q_proj, WQLinear_GEMM):
        qkv_layer.qweight = torch.cat([q_proj.qweight, k_proj.qweight, v_proj.qweight], dim=1)
        qkv_layer.qzeros = torch.cat([q_proj.qzeros, k_proj.qzeros, v_proj.qzeros], dim=1)
        qkv_layer.scales = torch.cat([q_proj.scales, k_proj.scales, v_proj.scales], dim=1)
    elif isinstance(q_proj, WQLinear_Exllama):
        qkv_layer.qweight = torch.cat([q_proj.qweight, k_proj.qweight, v_proj.qweight], dim=1)
        qkv_layer.qzeros = torch.cat([q_proj.qzeros, k_proj.qzeros, v_proj.qzeros], dim=1)
        qkv_layer.scales = torch.cat([q_proj.scales, k_proj.scales, v_proj.scales], dim=1)
    elif isinstance(q_proj, WQLinear_ExllamaV2):
Casper's avatar
Casper committed
86
87
88
89
90
91
92
        qkv_layer.qweight = torch.cat([q_proj.qweight, k_proj.qweight, v_proj.qweight], dim=1)
        qkv_layer.qzeros = torch.cat([q_proj.qzeros, k_proj.qzeros, v_proj.qzeros], dim=1)
        qkv_layer.scales = torch.cat([q_proj.scales, k_proj.scales, v_proj.scales], dim=1)
    
    qkv_layer.bias = bias

    return qkv_layer
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136

def get_attention_shapes(attention_shapes, max_seq_len, cache_batch_size, n_heads, n_kv_heads, head_dim):
    if attention_shapes is not None:
        attention_shapes = attention_shapes

    elif n_kv_heads == 0:
        attention_shapes = {
            # following fastertransformer definition
            "cache_v": (cache_batch_size, n_heads, max_seq_len, head_dim,),
            # 8: pack 8 fp16 in FT, if fp32 then use 4
            "cache_k": (cache_batch_size, n_heads, head_dim // 8, max_seq_len, 8,),
            "xqkv_view": (-1, n_heads, head_dim),
            "xq_slice": lambda xqkv: xqkv[:, :, 0],
            "xk_slice": lambda xqkv: xqkv[:, :, 1],
            "xv_slice": lambda xqkv: xqkv[:, :, 2],
            "xq_view": (n_heads, head_dim),
            "xk_view": (n_heads, head_dim),
            "xv_view": (n_heads, head_dim),
            "xk_reshape": (n_heads, head_dim // 8, 8),
            "single_xq_view": (n_heads, head_dim),
            "single_xk_view": (n_heads, head_dim),
            "single_xv_view": (n_heads, head_dim)
        }

    else:
        attention_shapes = {
            # following fastertransformer definition
            "cache_v": (cache_batch_size, n_kv_heads, max_seq_len, head_dim,),
            # 8: pack 8 fp16 in FT, if fp32 then use 4
            "cache_k": (cache_batch_size, n_kv_heads, head_dim // 8, max_seq_len, 8,),
            "xqkv_view": (n_heads + n_kv_heads * 2, head_dim),
            "xq_slice": lambda xqkv: xqkv[:, :, 0 : n_heads],
            "xk_slice": lambda xqkv: xqkv[:, :, n_heads : (n_heads + n_kv_heads)],
            "xv_slice": lambda xqkv: xqkv[:, :, -n_kv_heads :],
            "xq_view": (n_heads, head_dim),
            "xk_view": (n_kv_heads, head_dim),
            "xv_view": (n_kv_heads, head_dim),
            "xk_reshape": (n_kv_heads, head_dim // 8, 8),
            "single_xq_view": (n_heads, head_dim),
            "single_xk_view": (n_kv_heads, head_dim),
            "single_xv_view": (n_kv_heads, head_dim)
        }
    
    return attention_shapes