gemm_cuda_gen.cu 12.4 KB
Newer Older
Ji Lin's avatar
Ji Lin committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
#include <torch/extension.h>
#include "gemm_cuda.h"
#include "dequantize.cuh"
#include <cuda_fp16.h>
#include <c10/cuda/CUDAGuard.h>


// Pack two half values.
static inline __device__ __host__ unsigned
__pack_half2(const half x, const half y) {
  unsigned v0 = *((unsigned short *)&x);
  unsigned v1 = *((unsigned short *)&y);
  return (v1 << 16) | v0;
}

__global__ void __launch_bounds__(64) gemm_forward_4bit_cuda_m16n128k32(int split_k_iters, half* __restrict__ A, int* __restrict__ B, half* __restrict__ scaling_factors, int* __restrict__ zeros, int M, int IC, int OC, half* __restrict__ C) 
{
  static constexpr uint32_t ZERO = 0x0;
  float C_warp[32];
  __shared__ half A_shared[16 * (32 + 8)];
  __shared__ half B_shared[32 * (128 + 8)];
  
  __shared__ half scaling_factors_shared[128];
  __shared__ half zeros_shared[128];

  int j_factors1 = ((OC + 128 - 1) / 128);

28
29
30
31
  int blockIdx_x = 0;
  int blockIdx_y = blockIdx.x % ((M + 16 - 1) / 16 * j_factors1);
  int blockIdx_z = blockIdx.x / ((M + 16 - 1) / 16 * j_factors1);

Ji Lin's avatar
Ji Lin committed
32
33
34
35
36
37
38
39
40
41
42
  half A_shared_warp[8];
  half B_shared_warp[32];
  for (int j_0_4_init = 0; j_0_4_init < 4; ++j_0_4_init) {
    for (int i = 0; i < 8; ++i) {
      C_warp[(j_0_4_init * 8) + i] = 0.0;
    }
  }

  static constexpr int row_stride_warp = 32 * 8 / 32;
  static constexpr int row_stride = 2 * 32 * 8 / 128;
  bool ld_zero_flag = (threadIdx.y * 32 + threadIdx.x) * 8 < 128;
43
44
  // TODO: Haotian: blockIdx_y / j_factors1 in A loading to support bsz > 16
  bool ld_A_flag = (blockIdx_y / j_factors1 * 16 + threadIdx.y * row_stride_warp + threadIdx.x * 8 / 32) < M;     // threadIdx.y is warp_id
Ji Lin's avatar
Ji Lin committed
45
46
47
  // bool wb_C_flag = (threadIdx.x / 4) < M;

  half* A_ptr = A 
48
                + (((int)blockIdx_y) / j_factors1 * 16 + (((int)threadIdx.y) * row_stride_warp) + ((int)threadIdx.x) / (32 / 8)) * IC
Ji Lin's avatar
Ji Lin committed
49
50
51
52
53
                + (((int)threadIdx.x) % (32 / 8)) * 8;
  
  int* B_ptr = B
            + ((int)threadIdx.y) * (OC / 8) * 2
            + (((int)threadIdx.x) / (128 / 8)) * (OC / 8)
54
            + (((int)blockIdx_y) % j_factors1) * (128 / 8)
Ji Lin's avatar
Ji Lin committed
55
56
57
58
59
60
61
62
63
64
65
66
67
            + (((int)threadIdx.x) % (128 / 8)) * 1;
                        
  half* A_shared_ptr = A_shared 
                    + ((int)threadIdx.y) * row_stride_warp * (32 + 8) 
                    + (((int)threadIdx.x) / (32 / 8)) * (32 + 8)
                    + (((int)threadIdx.x) % (32 / 8) ) * 8;

  half* B_shared_ptr = B_shared
                    + ((int)threadIdx.y) * (row_stride / 2) * (128 + 8)
                    + (((int)threadIdx.x) / (128 / 8)) * (128 + 8)
                    + (((int)threadIdx.x) % (128 / 8)) * 8;
  
  int* zeros_ptr = zeros
68
                + (((int)blockIdx_y) % j_factors1) * (128 / 8)
Ji Lin's avatar
Ji Lin committed
69
70
71
                + ((int)threadIdx.x) % (128 / 8);
  
  half* scaling_factors_ptr = scaling_factors
72
                            + (((int)blockIdx_y) % j_factors1) * (128) 
Ji Lin's avatar
Ji Lin committed
73
74
75
                            + (((int)threadIdx.x) % (128 / 8)) * 8;

  half* C_ptr = C 
76
77
              + blockIdx_z * M * OC        // blockIdz.x -> split_k dim
              + (((int)blockIdx_y) % j_factors1) * 128
Ji Lin's avatar
Ji Lin committed
78
79
80
81
82
              + ((int)threadIdx.y) * 64
              + (((int)threadIdx.x) % 4) * 2;

  // preload s.f. and zeros
  int k_bound = (IC / 32 + split_k_iters - 1) / split_k_iters;
83
  if ((k_bound - 1) * 32 + blockIdx_z >= IC) k_bound -= 1;
Ji Lin's avatar
Ji Lin committed
84
  for (int _k_0_0 = 0; _k_0_0 < k_bound; ++_k_0_0) {
85
    int k_0_0 = _k_0_0 * split_k_iters + blockIdx_z;
Ji Lin's avatar
Ji Lin committed
86
    __syncthreads();
87
    // TODO: Haotian: blockIdx_y / j_factors1 in A loading to support bsz > 16
Ji Lin's avatar
Ji Lin committed
88
89
90
91
92
93
94
95
96
97
98
99
100
101
    if (ld_A_flag)
    {
      *(uint4*)(A_shared_ptr) = *(uint4*)(A_ptr + (k_0_0 * 32));
    }
    else
    {
      *(uint4*)(A_shared_ptr) = make_uint4(0, 0, 0, 0);
    }

    // for (int ax0_ax1_fused_0 = 0; ax0_ax1_fused_0 < 2; ++ax0_ax1_fused_0) {
    uint32_t zeros_loaded = *(uint32_t*)(zeros_ptr + k_0_0 * 32 / 128 * (OC / 8));
    uint4 B_loaded_zero = dequantize_s4_to_fp16x2(zeros_loaded);
    uint4 B_loaded_scale = *(uint4*)(scaling_factors_ptr + k_0_0 * 32 / 128 * (OC));
    /*
102
    if (blockIdx_z == 0 && blockIdx_y == 0 && k_0_0 == 0 && threadIdx.x == 0 && threadIdx.y == 0){
Ji Lin's avatar
Ji Lin committed
103
104
105
106
107
108
109
110
111
112
113
      printf("%x %x %x %x %x %x %x %x\n", B_loaded_scale.x, B_loaded_scale.y, B_loaded_scale.z, B_loaded_scale.w, B_loaded_zero.x, B_loaded_zero.y, B_loaded_zero.z, B_loaded_zero.w);
    }
    */
    // uint4 B_loaded_scale = make_uint4(0, 0, 0, 0);
    int* B_ptr_local = B_ptr + k_0_0 * 32 * (OC / 8);

    for (int ax0_ax1_fused_0 = 0; ax0_ax1_fused_0 < 8; ++ax0_ax1_fused_0) {

      // B: 32 x 136 (128+8) float16
      // each warp: 32 x 4
      // each thr: read 32 bit -> convert to 8xFP16 (a UINT4) -> scale and minus zero -> WB UINT4
114
      // *(uint4*)(B_shared + ((((ax0_ax1_fused_0 * 544) + (((int)threadIdx.y) * 272)) + ((((int)threadIdx.x) >> 4) * 136)) + ((((int)threadIdx.x) & 15) * 8))) = *(uint4*)(B + ((((((k_0_0 * 163840) + (ax0_ax1_fused_0 * 20480)) + (((int)threadIdx.y) * 10240)) + ((((int)threadIdx.x) >> 4) * 5120)) + (((int)blockIdx_y) * 128)) + ((((int)threadIdx.x) & 15) * 8)));
Ji Lin's avatar
Ji Lin committed
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
      // row stride in shared memory: (NWARPS * 32 * 8 / cta_N) 
      uint32_t B_loaded = *(uint32_t*)(B_ptr_local + ax0_ax1_fused_0 * row_stride * (OC / 8));
      uint4 B_loaded_fp16 = dequantize_s4_to_fp16x2(B_loaded);
      //uint4 B_loaded_zero = *(uint4*)(zeros_shared + (threadIdx.x % (cta_N / 8)) * 8);

      // uint4 B_loaded_scale = *(uint4*)(scaling_factors_shared + (threadIdx.x % (cta_N / 8)) * 8);
      // - zero and * scale
      // TODO (Haotian): can save 4 assembly instructions if sormulate as deq = q * scale - zero * scale.
      asm volatile("sub.f16x2 %0, %1, %2;\n" : "=r"(B_loaded_fp16.x) : "r"(B_loaded_fp16.x), "r"(B_loaded_zero.x));
      asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n" : "=r"(B_loaded_fp16.x) : "r"(B_loaded_fp16.x), "r"(B_loaded_scale.x), "r"(ZERO));
      asm volatile("sub.f16x2 %0, %1, %2;\n" : "=r"(B_loaded_fp16.y) : "r"(B_loaded_fp16.y), "r"(B_loaded_zero.y));
      asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n" : "=r"(B_loaded_fp16.y) : "r"(B_loaded_fp16.y), "r"(B_loaded_scale.y), "r"(ZERO));
      asm volatile("sub.f16x2 %0, %1, %2;\n" : "=r"(B_loaded_fp16.z) : "r"(B_loaded_fp16.z), "r"(B_loaded_zero.z));
      asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n" : "=r"(B_loaded_fp16.z) : "r"(B_loaded_fp16.z), "r"(B_loaded_scale.z), "r"(ZERO));
      asm volatile("sub.f16x2 %0, %1, %2;\n" : "=r"(B_loaded_fp16.w) : "r"(B_loaded_fp16.w), "r"(B_loaded_zero.w));
      asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n" : "=r"(B_loaded_fp16.w) : "r"(B_loaded_fp16.w), "r"(B_loaded_scale.w), "r"(ZERO));
      /*
132
      if (ax0_ax1_fused_0 == 0 && blockIdx_z == 0 && blockIdx_y == 0 && k_0_0 == 0 && threadIdx.x == 17 && threadIdx.y == 0){
Ji Lin's avatar
Ji Lin committed
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
        printf("[x] %X %X %X %X\n", B_loaded_fp16.x, B_loaded_fp16.y, B_loaded_fp16.z, B_loaded_fp16.w);
      }
      */

      // write back
      *(uint4*)(B_shared_ptr + ax0_ax1_fused_0 * row_stride * (128 + 8)) = B_loaded_fp16;
    }
    __syncthreads();

    for (int k_0_1 = 0; k_0_1 < 2; ++k_0_1) {
      {
        unsigned int addr;
        __asm__ __volatile__(
          "{ .reg .u64 addr; cvta.to.shared.u64 addr, %1; cvt.u32.u64 %0, addr; }\n"
          : "=r"(addr)
          : "l"((void *)((&(A_shared[(k_0_1 * 16)])) + (((((int)threadIdx.x) & 15) * 40) + ((((int)threadIdx.x) >> 4) * 8))))
        );


        __asm__ __volatile__(
          "ldmatrix.sync.aligned.m8n8.x4.shared.b16"
          "{%0, %1, %2, %3}, [%4];\n"
          : "=r"(((unsigned *)(A_shared_warp + 0))[0]), "=r"(((unsigned *)(A_shared_warp + 0))[1]), "=r"(((unsigned *)(A_shared_warp + 0))[2]), "=r"(((unsigned *)(A_shared_warp + 0))[3])
          : "r"(addr)
        );
      }

      for (int ax1_0 = 0; ax1_0 < 4; ++ax1_0) {
        {
          unsigned int addr;
          __asm__ __volatile__(
            "{ .reg .u64 addr; cvta.to.shared.u64 addr, %1; cvt.u32.u64 %0, addr; }\n"
            : "=r"(addr)
            : "l"((void *)((&(B_shared[(((k_0_1 * 2176) + (((int)threadIdx.y) * 64)) + (ax1_0 * 16))])) + (((((int)threadIdx.x) & 15) * 136) + ((((int)threadIdx.x) >> 4) * 8))))
          );
          __asm__ __volatile__(
            "ldmatrix.sync.aligned.m8n8.x4.trans.shared.b16"
            "{%0, %1, %2, %3}, [%4];\n"
            : "=r"(((unsigned *)(B_shared_warp + (ax1_0 * 8)))[0]), "=r"(((unsigned *)(B_shared_warp + (ax1_0 * 8)))[1]), "=r"(((unsigned *)(B_shared_warp + (ax1_0 * 8)))[2]), "=r"(((unsigned *)(B_shared_warp + (ax1_0 * 8)))[3])
            : "r"(addr)
          );
        }
      }
      for (int j_0_4 = 0; j_0_4 < 4; ++j_0_4) {
        {
          __asm__ __volatile__(
            "mma.sync.aligned.m16n8k16.row.col.f32.f16.f16.f32"
            "{%0, %1, %2, %3}, {%4, %5, %6, %7}, {%8, %9}, {%10, %11, %12, %13};\n"
            :  "=f"(((float *)(C_warp + (j_0_4 * 8)))[0]), "=f"(((float *)(C_warp + (j_0_4 * 8)))[1]), "=f"(((float *)(C_warp + (j_0_4 * 8)))[2]), "=f"(((float *)(C_warp + (j_0_4 * 8)))[3])
            : "r"(((unsigned *)(A_shared_warp + 0))[0]), "r"(((unsigned *)(A_shared_warp + 0))[1]), "r"(((unsigned *)(A_shared_warp + 0))[2]), "r"(((unsigned *)(A_shared_warp + 0))[3]), "r"(((unsigned *)(B_shared_warp + (j_0_4 * 8)))[0]), "r"(((unsigned *)(B_shared_warp + (j_0_4 * 8)))[1]), "f"(((float *)(C_warp + (j_0_4 * 8)))[0]), "f"(((float *)(C_warp + (j_0_4 * 8)))[1]), "f"(((float *)(C_warp + (j_0_4 * 8)))[2]), "f"(((float *)(C_warp + (j_0_4 * 8)))[3]));
        }

        {
          __asm__ __volatile__(
            "mma.sync.aligned.m16n8k16.row.col.f32.f16.f16.f32"
            "{%0, %1, %2, %3}, {%4, %5, %6, %7}, {%8, %9}, {%10, %11, %12, %13};\n"
            :  "=f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[0]), "=f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[1]), "=f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[2]), "=f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[3])
            : "r"(((unsigned *)(A_shared_warp + 0))[0]), "r"(((unsigned *)(A_shared_warp + 0))[1]), "r"(((unsigned *)(A_shared_warp + 0))[2]), "r"(((unsigned *)(A_shared_warp + 0))[3]), "r"(((unsigned *)(B_shared_warp + ((j_0_4 * 8) + 4)))[0]), "r"(((unsigned *)(B_shared_warp + ((j_0_4 * 8) + 4)))[1]), "f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[0]), "f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[1]), "f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[2]), "f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[3]));
        }
      }
    }
  }

// TODO: Shang: Hoist loop invariance.
  for (int ax1_0_1 = 0; ax1_0_1 < 4; ++ax1_0_1) {
    for (int local_id = 0; local_id < 8; ++local_id) {
199
      int row_offset = (((int)blockIdx_y) / j_factors1) * 16 + ((int)threadIdx.x) / 4 + (local_id % 4) / 2 * 8;
Ji Lin's avatar
Ji Lin committed
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
      if (row_offset < M)
      {
        *(C_ptr + ax1_0_1 * 16 + row_offset * OC + (local_id / 4) * 8 + local_id % 2) = __float2half(C_warp[(ax1_0_1 * 8) + local_id]);
      }
    }
  }
}

// in_feats: M, IC [float16]
// kernel: IC, OC // 8 [int32] -> cast to IC, OC [uint4b]
// scaling_factors: IC // G, OC [float16]
// zeros: IC // G, OC // 8 [int32] -> cast to IC // G, OC [uint4b]
// assume that batch_size < 16 for now

torch::Tensor gemm_forward_cuda(
    torch::Tensor _in_feats,
    torch::Tensor _kernel,
    torch::Tensor _scaling_factors,
    torch::Tensor _zeros,
    int split_k_iters)
{
    int num_in_feats = _in_feats.size(0);
    int num_in_channels = _in_feats.size(1);
    const at::cuda::OptionalCUDAGuard device_guard(device_of(_in_feats));

    auto options = torch::TensorOptions().dtype(_in_feats.dtype()).device(_in_feats.device());
    at::Tensor _out_feats = torch::empty({split_k_iters, num_in_feats, _kernel.size(1) * 8}, options);
    int num_out_feats = _out_feats.size(-2);
    int num_out_channels = _out_feats.size(-1);

    auto in_feats = reinterpret_cast<half*>(_in_feats.data_ptr<at::Half>());
    auto kernel = reinterpret_cast<int*>(_kernel.data_ptr<int>());
    auto out_feats = reinterpret_cast<half*>(_out_feats.data_ptr<at::Half>());
    auto scaling_factors = reinterpret_cast<half*>(_scaling_factors.data_ptr<at::Half>());
    auto zeros = reinterpret_cast<int*>(_zeros.data_ptr<int>());


    if (num_out_channels % 128 != 0)
        throw std::invalid_argument("OC is not multiple of cta_N = 128");
    if (num_out_channels % 8 != 0)
        throw std::invalid_argument("OC is not multiple of pack_num = 8");
    int j_factors1 = num_out_channels / 128 / 1;
242
    dim3 num_blocks((num_out_feats + 16 - 1) / 16 * j_factors1 * split_k_iters);
Ji Lin's avatar
Ji Lin committed
243
244
245
246
247
248
249
250
251
    
    // threadIdx.x: 32
    // threadIdx.y: i_factors[2] * j_factors[2]
    dim3 threads_per_block(32, 2);
    gemm_forward_4bit_cuda_m16n128k32<<<num_blocks, threads_per_block>>>(
        split_k_iters, in_feats, kernel, scaling_factors, zeros, num_in_feats, num_in_channels, num_out_channels, out_feats);
    return _out_feats.sum(0);
}