mistral.py 2.24 KB
Newer Older
Casper Hansen's avatar
Casper Hansen committed
1
import logging
Casper Hansen's avatar
Casper Hansen committed
2
from .base import BaseAWQForCausalLM
Casper Hansen's avatar
Casper Hansen committed
3
4
5
6
7
8
9
10

try:
    from transformers.models.mistral.modeling_mistral import MistralDecoderLayer, MistralForCausalLM
except:
    # TODO: Remove once released on PyPi
    logging.warning("You need the latest transformers 4.34.0.dev0: pip install git+https://github.com/huggingface/transformers.git")
    MistralForCausalLM = None
    MistralDecoderLayer = None
Casper Hansen's avatar
Casper Hansen committed
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

class MistralAWQForCausalLM(BaseAWQForCausalLM):
    layer_type = "MistralDecoderLayer"
    max_new_tokens_key = "max_position_embeddings"

    @staticmethod
    def get_model_layers(model: MistralForCausalLM):
        return model.model.layers
    
    @staticmethod
    def get_act_for_scaling(module: MistralDecoderLayer):
        return dict(
            is_scalable=False
        )
    
    @staticmethod
    def move_embed(model: MistralForCausalLM, device: str):
        model.model.embed_tokens = model.model.embed_tokens.to(device)
    
    @staticmethod
    def get_layers_for_scaling(module: MistralDecoderLayer, input_feat, module_kwargs):
        layers = []

        # attention input
        layers.append(dict(
            prev_op=module.input_layernorm,
            layers=[module.self_attn.q_proj,
                    module.self_attn.k_proj, module.self_attn.v_proj],
            inp=input_feat['self_attn.q_proj'],
            module2inspect=module.self_attn, kwargs=module_kwargs,
        ))

        # attention out
        # Please refer to https://github.com/mit-han-lab/llm-awq/pull/67#issue-1850622696
        if module.self_attn.v_proj.weight.shape == module.self_attn.o_proj.weight.shape:
            layers.append(dict(
                prev_op=module.self_attn.v_proj,
                layers=[module.self_attn.o_proj],
                inp=input_feat['self_attn.o_proj'],
            ))
        
        # linear 1
        layers.append(dict(
            prev_op=module.post_attention_layernorm,
            layers=[module.mlp.gate_proj, module.mlp.up_proj],
            inp=input_feat['mlp.gate_proj'],
            module2inspect=module.mlp,
        ))

        # linear 2
        layers.append(dict(
            prev_op=module.mlp.up_proj,
            layers=[module.mlp.down_proj],
            inp=input_feat['mlp.down_proj'],
        ))

        return layers