- 11 Aug, 2023 1 commit
-
-
Pruthvi Madugundu authored
-
- 12 Jun, 2023 1 commit
-
-
flyingdown authored
2.添加环境变量APEX_ROCBLAS_GEMM_ALLOW_HALF用于控制是否使用fp16r 3.添加dcu版本信息 whl包名修改 readme更新安装步骤
-
- 14 Nov, 2022 1 commit
-
-
flyingdown authored
-
- 31 May, 2022 1 commit
-
-
Hubert Lu authored
* Make rocblas_gemm_flags_fp16_alt_impl backward-compat for new naming * Use BACKWARD_PASS_GUARD_CLASS to prevent lengthy if-statement
-
- 06 Apr, 2022 1 commit
-
-
Hubert Lu authored
Make rocblas_gemm_flags_fp16_alt_impl in MHA and MLP backward compatible with old PyTorch versions (#74) * First attempt to make rocblas flag backward compatible * Fix some bugs * Fix some bugs * Make rocblas_gemm_flags_fp16_alt_impl in MHA backward compatible with old PyTorch versions * Add groupbn extension unit tests for ROCm * Fix some bugs
-
- 23 Mar, 2022 1 commit
-
-
Hubert Lu authored
* Add rocblas_alt_impl flag in MLP * Refactor rocblas_alt_impl implementation and only use it for backprop
-
- 17 May, 2021 1 commit
-
-
Burc Eryilmaz authored
Co-authored-by:Sukru Eryilmaz <seryilmaz@computelab-dgx1v-32.nvidia.com>
-
- 19 Apr, 2021 1 commit
-
-
Burc Eryilmaz authored
* don't create cublasLt handle, fix zero block size case * cleanup
-
- 17 Apr, 2021 1 commit
-
-
Burc Eryilmaz authored
* initial cublaslt support * 64 bit input * add license headers * cleanup * remove license Co-authored-by:pbialecki <pbialecki@nvidia.com>
-
- 05 Aug, 2020 1 commit
-
-
Chaitanya Sri Krishna Lolla authored
* enable mlp cuda * add setup changes and tests * skip the unit tests * updated conditions for empty array * removed hip platform conditions
-
- 07 May, 2020 1 commit
-
-
Chaitanya Sri Krishna Lolla authored
* fix dropout scaling from p to 1/(1-p) (#816) Co-authored-by:Sukru Eryilmaz <seryilmaz@computelab-dgx1v-32.nvidia.com> * Improvements to apex.mlp (#804) * update fused bias relu backward kernel * adding support for not require first layer dgrad * fix bug: wrong layer in requires grad * add infrastructure for optional bias and activation, currently only support no bias and no relu * make bias and relu optional separately * add sigmoid activation option * enable wider load/store for multi_tensor_apply kernels (#763) * modify MTA axpby for wider load/store * Make scale/axpby/l2/adam/lamb multi_tensor uses wider load * Changes to make xentropysoftmax load/store vectorized when possible: (#725) * Changes to make xentropysoftmax load/store vectorized when possible: Increase default ILP so that each thread handle 16 Bytes data in one step Make thread load/store longest vector possible Make unroll case handle adjacent data instead of strided...
-
- 30 Apr, 2020 1 commit
-
-
Deyu Fu authored
* update fused bias relu backward kernel * adding support for not require first layer dgrad * fix bug: wrong layer in requires grad * add infrastructure for optional bias and activation, currently only support no bias and no relu * make bias and relu optional separately * add sigmoid activation option
-
- 22 Apr, 2020 1 commit
-
-
Deyu Fu authored
-