Unverified Commit cdb0b3ee authored by Thor Johnsen's avatar Thor Johnsen Committed by GitHub
Browse files

Merge pull request #863 from NVIDIA/distributed_lamb_optimizer

Distributed lamb optimizer
parents 5754fa7a 55ae5fbb
#include <torch/extension.h>
void multi_tensor_lamb_compute_update_term_cuda(
int chunk_size,
at::Tensor noop_flag,
std::vector<std::vector<at::Tensor>> tensor_lists,
at::Tensor per_tensor_beta1,
at::Tensor per_tensor_beta2,
at::Tensor per_tensor_beta3,
at::Tensor per_tensor_bias_correction,
const int step,
at::Tensor per_tensor_epsilon,
const int mode,
at::Tensor per_tensor_decay,
const float global_grad_norm,
const float max_global_grad_norm);
void multi_tensor_lamb_update_weights_cuda(
int chunk_size,
at::Tensor noop_flag,
std::vector<std::vector<at::Tensor>> tensor_lists,
at::Tensor per_tensor_param_norm,
at::Tensor per_tensor_update_norm,
const float learning_rate,
at::Tensor per_tensor_decay,
bool use_nvlamb);
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("multi_tensor_lamb_compute_update_term", &multi_tensor_lamb_compute_update_term_cuda,
"Computes update term for LAMB optimizer");
m.def("multi_tensor_lamb_update_weights", &multi_tensor_lamb_update_weights_cuda,
"Applies update term for LAMB optimizer");
}
#include <ATen/ATen.h>
#include <ATen/AccumulateType.h>
#include <ATen/cuda/CUDAContext.h>
#include <ATen/cuda/Exceptions.h>
// Another possibility:
// #include <torch/all.h>
#include <assert.h>
#include "type_shim.h"
#include "multi_tensor_apply.cuh"
#define BLOCK_SIZE 512
#define ILP 4
template<typename T>
__device__ __forceinline__ bool is_aligned(T* p){
return ((uint64_t)p) % (ILP*sizeof(T)) == 0;
}
template<typename T>
__device__ __forceinline__ void load_store(T* dst, T* src, int dst_offset, int src_offset){
typedef typename std::aligned_storage<ILP*sizeof(T), ILP*alignof(T)>::type LT;
((LT*)dst)[dst_offset] = ((LT*)src)[src_offset];
}
template <typename FROM_T, typename TO_T>
__device__ void convert(const FROM_T vi, TO_T& vo)
{
vo = static_cast<TO_T>(vi);
}
template <>
__device__ void convert(const float vi, uint8_t& vo)
{
union S
{
float as_float;
int as_int;
};
S s;
s.as_float = vi;
s.as_int = s.as_int & 0xFF800000;
union T
{
at::Half as_half;
uint8_t as_byte[2];
};
T t;
t.as_half = static_cast<at::Half>(vi + s.as_float / 8.0f);
vo = t.as_byte[1];
}
template <>
__device__ void convert(const uint8_t vi, float& vo)
{
union T
{
at::Half as_half;
uint8_t as_byte[2];
};
T t;
t.as_byte[0] = 0;
t.as_byte[1] = vi;
vo = static_cast<float>(t.as_half);
}
template <>
__device__ void convert(const at::Half vi, uint8_t& vo)
{
union S
{
float as_float;
int as_int;
};
S s;
s.as_float = static_cast<float>(vi);
s.as_int = s.as_int & 0xFF800000;
union T
{
at::Half as_half;
uint8_t as_byte[2];
};
T t;
t.as_half = static_cast<at::Half>(vi + s.as_float / 8.0f);
vo = t.as_byte[1];
}
template <>
__device__ void convert(const uint8_t vi, at::Half& vo)
{
union T
{
at::Half as_half;
uint8_t as_byte[2];
};
T t;
t.as_byte[0] = 0;
t.as_byte[1] = vi;
vo = t.as_half;
}
typedef enum{
MOMENT_MODE_0 =0, // L2 regularization mode
MOMENT_MODE_1 =1 // Decoupled weight decay mode
} adamMode_t;
template<typename T, typename GRAD_T, typename MATH_T>
struct DistOptLAMBStage1Functor
{
__device__ __forceinline__ void operator()(
int chunk_size,
volatile int* noop_gmem,
TensorListMetadata<5>& tl,
const MATH_T* per_tensor_beta1,
const MATH_T* per_tensor_beta2,
const MATH_T* per_tensor_beta3,
const int* per_tensor_bias_correction,
const int step,
const MATH_T* per_tensor_epsilon,
adamMode_t mode,
const MATH_T* per_tensor_decay,
const MATH_T global_grad_norm,
const MATH_T max_global_grad_norm)
{
// I'd like this kernel to propagate infs/nans.
// if(*noop_gmem == 1)
// return;
int tensor_loc = tl.block_to_tensor[blockIdx.x];
int tensor_num = tl.start_tensor_this_launch + tensor_loc;
int chunk_idx = tl.block_to_chunk[blockIdx.x];
int n = tl.sizes[tensor_loc];
MATH_T clipped_global_grad_norm = global_grad_norm > max_global_grad_norm ? global_grad_norm / max_global_grad_norm : (MATH_T) 1.0;
MATH_T beta1 = per_tensor_beta1[tensor_num];
MATH_T beta2 = per_tensor_beta1[tensor_num];
MATH_T beta3 = per_tensor_beta1[tensor_num];
MATH_T beta1_correction, beta2_correction;
if (per_tensor_bias_correction[tensor_num] == 1) {
beta1_correction = 1 - pow(beta1, (MATH_T) step);
beta2_correction = 1 - pow(beta2, (MATH_T) step);
} else {
beta1_correction = (MATH_T) 1.0;
beta2_correction = (MATH_T) 1.0;
}
MATH_T epsilon = per_tensor_epsilon[tensor_num];
MATH_T decay = per_tensor_decay[tensor_num];
GRAD_T* g = (GRAD_T*)tl.addresses[0][tensor_loc];
g += chunk_idx*chunk_size;
T* p = (T*)tl.addresses[1][tensor_loc];
p += chunk_idx*chunk_size;
T* m = (T*)tl.addresses[2][tensor_loc];
m += chunk_idx*chunk_size;
T* v = (T*)tl.addresses[3][tensor_loc];
v += chunk_idx*chunk_size;
MATH_T* u = (MATH_T*)tl.addresses[4][tensor_loc];
u += chunk_idx*chunk_size;
n -= chunk_idx*chunk_size;
MATH_T r_g[ILP];
MATH_T r_p[ILP];
MATH_T r_m[ILP];
MATH_T r_v[ILP];
// to make things simple, we put aligned case in a different code path
if(n % ILP == 0 &&
chunk_size % ILP == 0 &&
is_aligned(g) &&
is_aligned(p) &&
is_aligned(m) &&
is_aligned(v))
{
GRAD_T l_g[ILP];
T l_p[ILP];
T l_m[ILP];
T l_v[ILP];
for(int i_start = threadIdx.x; i_start*ILP < n && i_start*ILP < chunk_size; i_start += blockDim.x)
{
// load
load_store(l_g, g, 0, i_start);
if (decay != 0)
load_store(l_p, p, 0, i_start);
load_store(l_m, m, 0, i_start);
load_store(l_v, v, 0, i_start);
// unpack
#pragma unroll
for(int ii = 0; ii < ILP; ii++)
{
r_g[ii] = l_g[ii];
if (decay == 0) {
r_p[ii] = MATH_T(0);
}
else {
r_p[ii] = l_p[ii];
}
r_m[ii] = l_m[ii];
r_v[ii] = l_v[ii];
}
#pragma unroll
for(int ii = 0; ii < ILP; ii++)
{
if (mode == MOMENT_MODE_0) {
MATH_T scaled_grad = r_g[ii] / clipped_global_grad_norm;
// L2 on scaled grad
scaled_grad = scaled_grad + decay*r_p[ii];
r_m[ii] = r_m[ii] * beta1 + beta3 * scaled_grad;
r_v[ii] = r_v[ii] * beta2 + (1-beta2) * scaled_grad * scaled_grad;
MATH_T next_m_unbiased = r_m[ii] / beta1_correction;
MATH_T next_v_unbiased = r_v[ii] / beta2_correction;
MATH_T denom = sqrtf(next_v_unbiased) + epsilon;
r_p[ii] = next_m_unbiased / denom;
}
else {
MATH_T scaled_grad = r_g[ii] / clipped_global_grad_norm;
r_m[ii] = r_m[ii] * beta1 + beta3 * scaled_grad;
r_v[ii] = r_v[ii] * beta2 + (1-beta2) * scaled_grad * scaled_grad;
MATH_T next_m_unbiased = r_m[ii] / beta1_correction;
MATH_T next_v_unbiased = r_v[ii] / beta2_correction;
MATH_T denom = sqrtf(next_v_unbiased) + epsilon;
r_p[ii] = (next_m_unbiased/denom) + (decay*r_p[ii]);
}
}
#pragma unroll
for(int ii = 0; ii < ILP; ii++)
{
l_m[ii] = r_m[ii];
l_v[ii] = r_v[ii];
}
// store
load_store(u, r_p, i_start, 0);
load_store(m, l_m, i_start, 0);
load_store(v, l_v, i_start, 0);
}
}
else
{
// see note in multi_tensor_scale_kernel.cu
for(int i_start = 0;
i_start < n && i_start < chunk_size;
i_start += blockDim.x*ILP)
{
MATH_T r_g[ILP];
MATH_T r_p[ILP];
MATH_T r_m[ILP];
MATH_T r_v[ILP];
#pragma unroll
for(int ii = 0; ii < ILP; ii++)
{
int i = i_start + threadIdx.x + ii*blockDim.x;
if(i < n && i < chunk_size)
{
r_g[ii] = g[i];
// special ?optimization? for lamb stage 1
if (decay == 0) {
r_p[ii] = MATH_T(0);
}
else {
r_p[ii] = p[i];
}
r_m[ii] = m[i];
r_v[ii] = v[i];
} else {
r_g[ii] = MATH_T(0);
r_p[ii] = MATH_T(0);
r_m[ii] = MATH_T(0);
r_v[ii] = MATH_T(0);
}
}
#pragma unroll
for(int ii = 0; ii < ILP; ii++)
{
if (mode == MOMENT_MODE_0) {
MATH_T scaled_grad = r_g[ii] / clipped_global_grad_norm;
// L2 on scaled grad
scaled_grad = scaled_grad + decay*r_p[ii];
r_m[ii] = r_m[ii] * beta1 + beta3 * scaled_grad;
r_v[ii] = r_v[ii] * beta2 + (1-beta2) * scaled_grad * scaled_grad;
MATH_T next_m_unbiased = r_m[ii] / beta1_correction;
MATH_T next_v_unbiased = r_v[ii] / beta2_correction;
MATH_T denom = sqrtf(next_v_unbiased) + epsilon;
r_p[ii] = next_m_unbiased / denom;
}
else {
MATH_T scaled_grad = r_g[ii] / clipped_global_grad_norm;
r_m[ii] = r_m[ii] * beta1 + beta3 * scaled_grad;
r_v[ii] = r_v[ii] * beta2 + (1-beta2) * scaled_grad * scaled_grad;
MATH_T next_m_unbiased = r_m[ii] / beta1_correction;
MATH_T next_v_unbiased = r_v[ii] / beta2_correction;
MATH_T denom = sqrtf(next_v_unbiased) + epsilon;
r_p[ii] = (next_m_unbiased/denom) + (decay*r_p[ii]);
}
}
#pragma unroll
for(int ii = 0; ii < ILP; ii++)
{
int i = i_start + threadIdx.x + ii*blockDim.x;
if(i < n && i < chunk_size)
{
u[i] = r_p[ii];
m[i] = r_m[ii];
v[i] = r_v[ii];
}
}
}
}
}
};
// Step 2 reads in 'update' value and per-tensor param_norm and update_norm.
// It computes new parameter value.
template<typename T, typename GRAD_T, typename MATH_T>
struct DistOptLAMBStage2Functor
{
__device__ __forceinline__ void operator()(
int chunk_size,
volatile int* noop_gmem,
TensorListMetadata<3>& tl,
const MATH_T* per_tensor_param_norm,
const MATH_T* per_tensor_update_norm,
const MATH_T learning_rate,
const MATH_T* per_tensor_decay,
bool use_nvlamb)
{
// I'd like this kernel to propagate infs/nans.
// if(*noop_gmem == 1)
// return;
int tensor_loc = tl.block_to_tensor[blockIdx.x];
int tensor_num = tl.start_tensor_this_launch + tensor_loc;
int chunk_idx = tl.block_to_chunk[blockIdx.x];
int n = tl.sizes[tensor_loc];
MATH_T decay = per_tensor_decay[tensor_num];
MATH_T ratio = learning_rate;
// nvlamb: apply adaptive learning rate to all parameters
// otherwise, only apply to those with non-zero weight decay
if (use_nvlamb || (decay != (MATH_T) 0.0))
{
MATH_T param_norm = per_tensor_param_norm[tensor_num];
MATH_T update_norm = per_tensor_update_norm[tensor_num];
ratio = (update_norm != (MATH_T) 0.0 && param_norm != (MATH_T) 0.0) ? learning_rate * (param_norm / update_norm) : learning_rate;
}
MATH_T* update = (MATH_T*)tl.addresses[0][tensor_loc];
update += chunk_idx*chunk_size;
T* p = (T*)tl.addresses[1][tensor_loc];
p += chunk_idx*chunk_size;
GRAD_T* p_copy = (GRAD_T*)tl.addresses[2][tensor_loc];
p_copy += chunk_idx*chunk_size;
n -= chunk_idx*chunk_size;
// to make things simple, we put aligned case in a different code path
if(n % ILP == 0 &&
chunk_size % ILP == 0 &&
is_aligned(p) &&
is_aligned(update))
{
T r_p[ILP];
MATH_T r_update[ILP];
GRAD_T r_p_copy[ILP];
for(int i_start = threadIdx.x; i_start*ILP < n && i_start*ILP < chunk_size; i_start += blockDim.x)
{
// load
load_store(r_p, p, 0, i_start);
load_store(r_update, update, 0, i_start);
#pragma unroll
for(int ii = 0; ii < ILP; ii++)
{
r_p[ii] = static_cast<MATH_T>(r_p[ii]) - (ratio * r_update[ii]);
convert(r_p[ii], r_p_copy[ii]);
}
load_store(p, r_p, i_start, 0);
load_store(p_copy, r_p_copy, i_start, 0);
}
}
else
{
for(int i_start = 0;
i_start < n && i_start < chunk_size;
i_start += blockDim.x*ILP)
{
MATH_T r_p[ILP];
MATH_T r_update[ILP];
#pragma unroll
for(int ii = 0; ii < ILP; ii++)
{
int i = i_start + threadIdx.x + ii*blockDim.x;
if(i < n && i < chunk_size)
{
r_p[ii] = p[i];
r_update[ii] = update[i];
}
}
#pragma unroll
for(int ii = 0; ii < ILP; ii++)
{
r_p[ii] = r_p[ii] - (ratio * r_update[ii]);
}
#pragma unroll
for(int ii = 0; ii < ILP; ii++)
{
int i = i_start + threadIdx.x + ii*blockDim.x;
if(i < n && i < chunk_size)
{
p[i] = r_p[ii];
convert(r_p[ii], p_copy[i]);
}
}
}
}
}
};
void multi_tensor_lamb_compute_update_term_cuda(
int chunk_size,
at::Tensor noop_flag,
std::vector<std::vector<at::Tensor>> tensor_lists,
at::Tensor per_tensor_beta1,
at::Tensor per_tensor_beta2,
at::Tensor per_tensor_beta3,
at::Tensor per_tensor_bias_correction,
const int step,
at::Tensor per_tensor_epsilon,
const int mode,
at::Tensor per_tensor_decay,
const float global_grad_norm,
const float max_global_grad_norm)
{
using namespace at;
DISPATCH_FLOAT_AND_HALF(tensor_lists[1][0].scalar_type(), 0, "lamb_stage_1",
DISPATCH_FLOAT_AND_HALF(tensor_lists[0][0].scalar_type(), 1, "lamb_stage_1",
DISPATCH_FLOAT_AND_HALF(tensor_lists[4][0].scalar_type(), 2, "lamb_stage_1",
multi_tensor_apply<5>(
BLOCK_SIZE,
chunk_size,
noop_flag,
tensor_lists,
DistOptLAMBStage1Functor<scalar_t_0, scalar_t_1, scalar_t_2>(),
per_tensor_beta1.DATA_PTR<scalar_t_2>(),
per_tensor_beta2.DATA_PTR<scalar_t_2>(),
per_tensor_beta3.DATA_PTR<scalar_t_2>(),
per_tensor_bias_correction.DATA_PTR<int>(),
step,
per_tensor_epsilon.DATA_PTR<scalar_t_2>(),
(adamMode_t) mode,
per_tensor_decay.DATA_PTR<scalar_t_2>(),
(scalar_t_2) global_grad_norm,
(scalar_t_2) max_global_grad_norm); )))
AT_CUDA_CHECK(cudaGetLastError());
}
void multi_tensor_lamb_update_weights_cuda(
int chunk_size,
at::Tensor noop_flag,
std::vector<std::vector<at::Tensor>> tensor_lists,
at::Tensor per_tensor_param_norm,
at::Tensor per_tensor_update_norm,
const float learning_rate,
at::Tensor per_tensor_decay,
bool use_nvlamb)
{
using namespace at;
DISPATCH_FLOAT_AND_HALF(tensor_lists[1][0].scalar_type(), 0, "lamb_stage_2",
DISPATCH_FLOAT_HALF_AND_BYTE(tensor_lists[2][0].scalar_type(), 1, "lamb_stage_2",
DISPATCH_FLOAT_AND_HALF(tensor_lists[0][0].scalar_type(), 2, "lamb_stage_2",
multi_tensor_apply<3>(
BLOCK_SIZE,
chunk_size,
noop_flag,
tensor_lists,
DistOptLAMBStage2Functor<scalar_t_0, scalar_t_1, scalar_t_2>(),
per_tensor_param_norm.DATA_PTR<scalar_t_2>(),
per_tensor_update_norm.DATA_PTR<scalar_t_2>(),
(scalar_t_2) learning_rate,
per_tensor_decay.DATA_PTR<scalar_t_2>(),
use_nvlamb); )))
AT_CUDA_CHECK(cudaGetLastError());
}
from .fp16_optimizer import FP16_Optimizer
from .fused_adam import FusedAdam
from .fused_lamb import FusedLAMB
from .distributed_fused_lamb import DistributedFusedLAMB
This diff is collapsed.
......@@ -96,6 +96,25 @@ if (TORCH_MAJOR > 1) or (TORCH_MAJOR == 1 and TORCH_MINOR > 4):
version_ge_1_5 = ['-DVERSION_GE_1_5']
version_dependent_macros = version_ge_1_1 + version_ge_1_3 + version_ge_1_5
if "--distributed_lamb" in sys.argv:
from torch.utils.cpp_extension import CUDAExtension
sys.argv.remove("--distributed_lamb")
from torch.utils.cpp_extension import BuildExtension
cmdclass['build_ext'] = BuildExtension
if torch.utils.cpp_extension.CUDA_HOME is None:
raise RuntimeError("--distributed_lamb was requested, but nvcc was not found. Are you sure your environment has nvcc available? If you're installing within a container from https://hub.docker.com/r/pytorch/pytorch, only images whose names contain 'devel' will provide nvcc.")
else:
ext_modules.append(
CUDAExtension(name='distributed_lamb_cuda',
sources=['apex/contrib/csrc/optimizers/multi_tensor_distopt_lamb.cpp',
'apex/contrib/csrc/optimizers/multi_tensor_distopt_lamb_kernel.cu'],
include_dirs=[os.path.join(this_dir, 'csrc')],
extra_compile_args={'cxx': ['-O3',] + version_dependent_macros,
'nvcc':['-O3',
'--use_fast_math'] + version_dependent_macros}))
if "--cuda_ext" in sys.argv:
from torch.utils.cpp_extension import CUDAExtension
sys.argv.remove("--cuda_ext")
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment