Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
apex
Commits
c7372320
"git@developer.sourcefind.cn:renzhc/diffusers_dcu.git" did not exist on "096f84b05f9514fae9f185cbec0a4d38fbad9919"
Commit
c7372320
authored
Mar 12, 2020
by
Thor Johnsen
Browse files
Add backwards compatible support for no inplace NCCL op
parent
400cf628
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
16 additions
and
2 deletions
+16
-2
apex/contrib/optimizers/distributed_fused_adam.py
apex/contrib/optimizers/distributed_fused_adam.py
+16
-2
No files found.
apex/contrib/optimizers/distributed_fused_adam.py
View file @
c7372320
...
@@ -153,6 +153,14 @@ class DistributedFusedAdam(torch.optim.Optimizer):
...
@@ -153,6 +153,14 @@ class DistributedFusedAdam(torch.optim.Optimizer):
self
.
_blk_st
.
append
(
torch
.
cuda
.
Stream
())
self
.
_blk_st
.
append
(
torch
.
cuda
.
Stream
())
self
.
_works
=
[]
self
.
_works
=
[]
import
inspect
if
if
'inplace'
in
inspect
.
getfullargspec
(
torch
.
distributed
.
reduce_scatter
).
args
:
self
.
_pg_supports_inplace
=
True
else
:
self
.
_pg_supports_inplace
=
False
print
(
"WARNING! torch.distributed.reduce_scatter does not support inplace op."
)
def
set_last_step
(
self
,
last_step
):
def
set_last_step
(
self
,
last_step
):
self
.
_last_step
=
last_step
self
.
_last_step
=
last_step
...
@@ -180,7 +188,10 @@ class DistributedFusedAdam(torch.optim.Optimizer):
...
@@ -180,7 +188,10 @@ class DistributedFusedAdam(torch.optim.Optimizer):
end
=
start
+
self
.
_block_size
end
=
start
+
self
.
_block_size
grad_block
=
flat_grads
[
start
:
end
]
grad_block
=
flat_grads
[
start
:
end
]
grad_shards
=
[
grad_block
[
i
*
self
.
_shard_size
:(
i
+
1
)
*
self
.
_shard_size
]
for
i
in
range
(
self
.
_group_size
)]
grad_shards
=
[
grad_block
[
i
*
self
.
_shard_size
:(
i
+
1
)
*
self
.
_shard_size
]
for
i
in
range
(
self
.
_group_size
)]
work
=
torch
.
distributed
.
reduce_scatter
(
grad_shards
[
self
.
_rank_in_group
],
grad_shards
,
group
=
self
.
_rs_pg
[
block_id
%
len
(
self
.
_rs_pg
)],
async_op
=
True
,
inplace
=
True
)
if
self
.
_pg_supports_inplace
:
work
=
torch
.
distributed
.
reduce_scatter
(
grad_shards
[
self
.
_rank_in_group
],
grad_shards
,
group
=
self
.
_rs_pg
[
block_id
%
len
(
self
.
_rs_pg
)],
async_op
=
True
,
inplace
=
True
)
else
:
work
=
torch
.
distributed
.
reduce_scatter
(
grad_shards
[
self
.
_rank_in_group
],
grad_shards
,
group
=
self
.
_rs_pg
[
block_id
%
len
(
self
.
_rs_pg
)],
async_op
=
True
)
if
self
.
_num_groups
>
1
:
if
self
.
_num_groups
>
1
:
work
.
wait
()
work
.
wait
()
work
=
torch
.
distributed
.
all_reduce
(
grad_shards
[
self
.
_rank_in_group
],
group
=
self
.
_ar_pg
[
block_id
%
len
(
self
.
_ar_pg
)],
async_op
=
True
)
work
=
torch
.
distributed
.
all_reduce
(
grad_shards
[
self
.
_rank_in_group
],
group
=
self
.
_ar_pg
[
block_id
%
len
(
self
.
_ar_pg
)],
async_op
=
True
)
...
@@ -199,7 +210,10 @@ class DistributedFusedAdam(torch.optim.Optimizer):
...
@@ -199,7 +210,10 @@ class DistributedFusedAdam(torch.optim.Optimizer):
shard_end
=
shard_start
+
self
.
_shard_size
shard_end
=
shard_start
+
self
.
_shard_size
block_id
=
start
//
self
.
_block_size
block_id
=
start
//
self
.
_block_size
self
.
_partial_step_single_shard
(
block_id
)
self
.
_partial_step_single_shard
(
block_id
)
work
=
torch
.
distributed
.
all_gather
(
new_params_shards
,
new_params_shards
[
self
.
_rank_in_group
],
group
=
self
.
_ag_pg
[
block_id
%
len
(
self
.
_ag_pg
)],
async_op
=
True
,
inplace
=
True
)
if
self
.
_pg_supports_inplace
:
work
=
torch
.
distributed
.
all_gather
(
new_params_shards
,
new_params_shards
[
self
.
_rank_in_group
],
group
=
self
.
_ag_pg
[
block_id
%
len
(
self
.
_ag_pg
)],
async_op
=
True
,
inplace
=
True
)
else
:
work
=
torch
.
distributed
.
all_gather
(
new_params_shards
,
new_params_shards
[
self
.
_rank_in_group
],
group
=
self
.
_ag_pg
[
block_id
%
len
(
self
.
_ag_pg
)],
async_op
=
True
)
return
work
return
work
def
_pipeline_block
(
self
,
block_id
,
flat_grads
,
new_params
):
def
_pipeline_block
(
self
,
block_id
,
flat_grads
,
new_params
):
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment