Commit adaa9137 authored by Michael Carilli's avatar Michael Carilli
Browse files

Readme updates + version in Sphinx

parent 0a092aaf
fp16_optimizer.py contains `FP16_Optimizer`, a Python class designed to wrap an existing Pytorch optimizer and automatically enable master parameters and loss scaling in a manner transparent to the user. To use `FP16_Optimizer`, only two lines of one's Python model need to change.
### [FP16_Optimizer API documentation](https://nvidia.github.io/apex/fp16_utils.html#automatic-management-of-master-params-loss-scaling)
#### [FP16_Optimizer API documentation](https://nvidia.github.io/apex/fp16_utils.html#automatic-management-of-master-params-loss-scaling)
### [Simple examples with FP16_Optimizer](https://github.com/NVIDIA/apex/tree/master/examples/FP16_Optimizer_simple)
#### [Simple examples with FP16_Optimizer](https://github.com/NVIDIA/apex/tree/master/examples/FP16_Optimizer_simple)
### [Imagenet with FP16_Optimizer](https://github.com/NVIDIA/apex/tree/master/examples/imagenet)
#### [Imagenet with FP16_Optimizer](https://github.com/NVIDIA/apex/tree/master/examples/imagenet)
### [word_language_model with FP16_Optimizer](https://github.com/NVIDIA/apex/tree/master/examples/word_language_model)
#### [word_language_model with FP16_Optimizer](https://github.com/NVIDIA/apex/tree/master/examples/word_language_model)
fp16_util.py contains a number of utilities to manually manage master parameters and loss scaling, if the user chooses.
### [Manual management documentation](https://nvidia.github.io/apex/fp16_utils.html#manual-master-parameter-management)
#### [Manual management documentation](https://nvidia.github.io/apex/fp16_utils.html#manual-master-parameter-management)
The [Imagenet with FP16_Optimizer](https://github.com/NVIDIA/apex/tree/master/examples/imagenet) and [word_language_model with FP16_Optimizer](https://github.com/NVIDIA/apex/tree/master/examples/word_language_model) directories also contain `main.py` files that demonstrate manual management of master parameters and static loss scaling. These examples illustrate what sort of operations `FP16_Optimizer` is performing automatically.
......@@ -6,10 +6,10 @@ transfers required.
multiproc.py contains the source code for `apex.parallel.multiproc`, a launch utility that places one process on each of the node's available GPUs.
### [API Documentation](https://nvidia.github.io/apex/parallel.html)
#### [API Documentation](https://nvidia.github.io/apex/parallel.html)
### [Example/Walkthrough](https://github.com/NVIDIA/apex/tree/master/examples/distributed)
#### [Example/Walkthrough](https://github.com/NVIDIA/apex/tree/master/examples/distributed)
### [Imagenet Example w/Mixed Precision](https://github.com/NVIDIA/apex/tree/master/examples/imagenet)
#### [Imagenet Example w/Mixed Precision](https://github.com/NVIDIA/apex/tree/master/examples/imagenet)
......@@ -73,10 +73,10 @@ author = 'Christian Sarofeen, Natalia Gimelshein, Michael Carilli, Raul Puri'
# The short X.Y version.
# TODO: change to [:2] at v1.0
# version = 'master (' + torch.__version__ + ' )'
version = '0.0'
version = '0.1'
# The full version, including alpha/beta/rc tags.
# TODO: verify this works as expected
release = '0.0.0'
release = '0.1.0'
# The language for content autogenerated by Sphinx. Refer to documentation
# for a list of supported languages.
......
......@@ -5,7 +5,7 @@ half and float parameters, only two lines of your training script need to change
1. Construct an `FP16_Optimizer` instance from an existing optimizer.
2. Replace `loss.backward()` with `optimizer.backward(loss)`.
[Full API Documentation](https://nvidia.github.io/apex/fp16_utils.html#automatic-management-of-master-params-loss-scaling)
#### [Full API Documentation](https://nvidia.github.io/apex/fp16_utils.html#automatic-management-of-master-params-loss-scaling)
See "Other Options" at the bottom of this page for some cases that require special treatment.
......
......@@ -13,11 +13,11 @@ global interpreter lock contention versus having a single process (with a single
overlapping communication with computation during ``backward()`` and bucketing smaller gradient
transfers to reduce the total number of transfers required.
[API Documentation](https://nvidia.github.io/apex/parallel.html)
#### [API Documentation](https://nvidia.github.io/apex/parallel.html)
[Source Code](https://github.com/NVIDIA/apex/tree/master/apex/parallel)
#### [Source Code](https://github.com/NVIDIA/apex/tree/master/apex/parallel)
[Another Example: Imagenet with mixed precision](https://github.com/NVIDIA/apex/tree/master/examples/imagenet)
#### [Another Example: Imagenet with mixed precision](https://github.com/NVIDIA/apex/tree/master/examples/imagenet)
## Getting started
Prior to running please run
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment