Commit 9319318d authored by hubertlu-tw's avatar hubertlu-tw
Browse files

Fix namespace for pybind11

Fix rocblas_gemmex namespace

Fix namespace

Clean up comments
parent 83181423
...@@ -3,7 +3,7 @@ ...@@ -3,7 +3,7 @@
namespace multihead_attn { namespace multihead_attn {
namespace encdec { namespace encdec {
namespace rocblas_gemm_ex { namespace rocblas_gemmex {
std::vector<torch::Tensor> fwd_cuda( std::vector<torch::Tensor> fwd_cuda(
bool use_time_mask, bool use_time_mask,
...@@ -151,6 +151,6 @@ std::vector<torch::Tensor> bwd( ...@@ -151,6 +151,6 @@ std::vector<torch::Tensor> bwd(
} // end namespace multihead_attn } // end namespace multihead_attn
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) { PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("forward", &multihead_attn::encdec::rocblas_gemm_ex::fwd, "Encdec Multihead Attention Forward."); m.def("forward", &multihead_attn::encdec::rocblas_gemmex::fwd, "Encdec Multihead Attention Forward.");
m.def("backward", &multihead_attn::encdec::rocblas_gemm_ex::bwd, "Encdec Multihead Attention Backward."); m.def("backward", &multihead_attn::encdec::rocblas_gemmex::bwd, "Encdec Multihead Attention Backward.");
} }
...@@ -692,6 +692,6 @@ std::vector<torch::Tensor> bwd_cuda( ...@@ -692,6 +692,6 @@ std::vector<torch::Tensor> bwd_cuda(
}; };
} }
} // end namespace cublas_gemmex } // end namespace rocblas_gemmex
} // end namespace encdec_norm_add } // end namespace encdec_norm_add
} // end namespace multihead_attn } // end namespace multihead_attn
...@@ -3,7 +3,7 @@ ...@@ -3,7 +3,7 @@
namespace multihead_attn { namespace multihead_attn {
namespace self_bias { namespace self_bias {
namespace rocblas_gemm_ex { namespace rocblas_gemmex {
std::vector<torch::Tensor> fwd_cuda( std::vector<torch::Tensor> fwd_cuda(
bool use_time_mask, bool use_time_mask,
...@@ -128,12 +128,12 @@ std::vector<torch::Tensor> bwd( ...@@ -128,12 +128,12 @@ std::vector<torch::Tensor> bwd(
); );
} }
} // end namespace rocblas_gemm_ex } // end namespace rocblas_gemmex
} // end namespace self } // end namespace self
} // end namespace multihead_attn } // end namespace multihead_attn
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) { PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("forward", &multihead_attn::self_bias::rocblas_gemm_ex::fwd, "Self Multihead Attention with Bias -- Forward."); m.def("forward", &multihead_attn::self_bias::rocblas_gemmex::fwd, "Self Multihead Attention with Bias -- Forward.");
m.def("backward", &multihead_attn::self_bias::rocblas_gemm_ex::bwd, "Self Multihead Attention with Bias -- Backward."); m.def("backward", &multihead_attn::self_bias::rocblas_gemmex::bwd, "Self Multihead Attention with Bias -- Backward.");
} }
...@@ -83,11 +83,9 @@ std::vector<torch::Tensor> fwd_cuda( ...@@ -83,11 +83,9 @@ std::vector<torch::Tensor> fwd_cuda(
char a_layout_t{'t'}; char a_layout_t{'t'};
char a_layout_n{'n'}; char a_layout_n{'n'};
char b_layout_n{'n'}; char b_layout_n{'n'};
// TODO (OK)
// THCublasCheck(cublasSetMathMode(handle, CUBLAS_TENSOR_OP_MATH));
// Input Linear Fwd // Input Linear Fwd
input_lin_results.copy_(input_biases); input_lin_results.copy_(input_biases);
// TODO (OK)
THCublasCheck(rocblas_gemm_ex(handle, THCublasCheck(rocblas_gemm_ex(handle,
CUBLAS_OP_T, CUBLAS_OP_T,
CUBLAS_OP_N, CUBLAS_OP_N,
...@@ -105,36 +103,15 @@ std::vector<torch::Tensor> fwd_cuda( ...@@ -105,36 +103,15 @@ std::vector<torch::Tensor> fwd_cuda(
q_lin_results_ptr, q_lin_results_ptr,
rocblas_datatype_f16_r, rocblas_datatype_f16_r,
output_lin_dim, output_lin_dim,
q_lin_results_ptr, // q_lin_results_ptr,
rocblas_datatype_f16_r, // rocblas_datatype_f16_r,
output_lin_dim, // output_lin_dim,
rocblas_datatype_f32_r, rocblas_datatype_f32_r,
algo, algo,
solution_index, solution_index,
flags)); flags));
// THCublasCheck(cublasGemmEx(handle,
// CUBLAS_OP_T,
// CUBLAS_OP_N,
// output_lin_dim,
// batches,
// embed_dim,
// static_cast<const void*>(&alpha),
// static_cast<const void*>(input_weights.data_ptr()),
// CUDA_R_16F,
// embed_dim,
// static_cast<const void*>(inputs.data_ptr()),
// CUDA_R_16F,
// embed_dim,
// static_cast<const void*>(&beta_one),
// q_lin_results_ptr,
// CUDA_R_16F,
// output_lin_dim,
// CUDA_R_32F,
// CUBLAS_GEMM_DEFAULT_TENSOR_OP));
// MatMul1 of Dot-Product Attention Plus scaling by 1/Sqrt(head size) // MatMul1 of Dot-Product Attention Plus scaling by 1/Sqrt(head size)
// TODO (OK)
gemm_switch_fp32accum( state, gemm_switch_fp32accum( state,
a_layout_t, a_layout_t,
b_layout_n, b_layout_n,
...@@ -156,24 +133,7 @@ std::vector<torch::Tensor> fwd_cuda( ...@@ -156,24 +133,7 @@ std::vector<torch::Tensor> fwd_cuda(
k_seq_len, k_seq_len,
k_seq_len*q_seq_len, k_seq_len*q_seq_len,
attn_batches); attn_batches);
// gemm_switch_fp32accum( state,
// a_layout_t,
// b_layout_n,
// k_seq_len,
// q_seq_len,
// head_dim,
// scale,
// static_cast<const half*>(k_lin_results_ptr),
// lead_dim,
// batch_stride,
// static_cast<const half*>(q_lin_results_ptr),
// lead_dim,
// batch_stride,
// beta_zero,
// static_cast<half*>(softmax_results_ptr),
// k_seq_len,
// k_seq_len*q_seq_len,
// attn_batches);
// Padded Softmax // Padded Softmax
bool softmax_success = false; bool softmax_success = false;
if (pad_mask == nullptr) { if (pad_mask == nullptr) {
...@@ -214,7 +174,6 @@ std::vector<torch::Tensor> fwd_cuda( ...@@ -214,7 +174,6 @@ std::vector<torch::Tensor> fwd_cuda(
} }
// Matmul2 // Matmul2
// TODO (OK)
gemm_switch_fp32accum( state, gemm_switch_fp32accum( state,
a_layout_n, a_layout_n,
b_layout_n, b_layout_n,
...@@ -236,29 +195,10 @@ std::vector<torch::Tensor> fwd_cuda( ...@@ -236,29 +195,10 @@ std::vector<torch::Tensor> fwd_cuda(
head_dim*attn_batches, head_dim*attn_batches,
head_dim, head_dim,
attn_batches); attn_batches);
// gemm_switch_fp32accum( state,
// a_layout_n,
// b_layout_n,
// head_dim,
// q_seq_len,
// k_seq_len,
// alpha,
// static_cast<const half*>(v_lin_results_ptr),
// lead_dim,
// batch_stride,
// (is_training) ? static_cast<const half*>(dropout_results.data_ptr()) : static_cast<const half*>(softmax_results.data_ptr()) ,
// k_seq_len,
// k_seq_len*q_seq_len,
// beta_zero,
// static_cast<half*>(matmul2_results.data_ptr()),
// head_dim*attn_batches,
// head_dim,
// attn_batches);
outputs.copy_(output_biases); outputs.copy_(output_biases);
// Output Linear // Output Linear
// TODO (OK)
THCublasCheck(rocblas_gemm_ex(handle, THCublasCheck(rocblas_gemm_ex(handle,
CUBLAS_OP_T, CUBLAS_OP_T,
CUBLAS_OP_N, CUBLAS_OP_N,
...@@ -283,28 +223,6 @@ std::vector<torch::Tensor> fwd_cuda( ...@@ -283,28 +223,6 @@ std::vector<torch::Tensor> fwd_cuda(
algo, algo,
solution_index, solution_index,
flags)); flags));
// THCublasCheck(cublasGemmEx(handle,
// CUBLAS_OP_T,
// CUBLAS_OP_N,
// embed_dim,
// batches,
// embed_dim,
// static_cast<const void*>(&alpha),
// static_cast<const void*>(output_weights.data_ptr()),
// CUDA_R_16F,
// embed_dim,
// static_cast<const void*>(matmul2_results.data_ptr()),
// CUDA_R_16F,
// embed_dim,
// static_cast<const void*>(&beta_one),
// static_cast<void*>(outputs.data_ptr()),
// CUDA_R_16F,
// embed_dim,
// CUDA_R_32F,
// //CUBLAS_GEMM_ALGO1_TENSOR_OP));
// CUBLAS_GEMM_DEFAULT_TENSOR_OP));
// TODO (OK)
// THCublasCheck(cublasSetMathMode(handle, CUBLAS_DEFAULT_MATH));
return { return {
input_lin_results, input_lin_results,
...@@ -372,11 +290,8 @@ std::vector<torch::Tensor> bwd_cuda( ...@@ -372,11 +290,8 @@ std::vector<torch::Tensor> bwd_cuda(
char a_layout_t{'t'}; char a_layout_t{'t'};
char b_layout_n{'n'}; char b_layout_n{'n'};
char b_layout_t{'t'}; char b_layout_t{'t'};
// TODO (OK)
// THCublasCheck(cublasSetMathMode(handle, CUBLAS_TENSOR_OP_MATH));
// Output Linear Dgrad // Output Linear Dgrad
// TODO (OK)
THCublasCheck(rocblas_gemm_ex(handle, THCublasCheck(rocblas_gemm_ex(handle,
CUBLAS_OP_N, CUBLAS_OP_N,
CUBLAS_OP_N, CUBLAS_OP_N,
...@@ -401,28 +316,8 @@ std::vector<torch::Tensor> bwd_cuda( ...@@ -401,28 +316,8 @@ std::vector<torch::Tensor> bwd_cuda(
algo, algo,
solution_index, solution_index,
flags)); flags));
// THCublasCheck(cublasGemmEx(handle,
// CUBLAS_OP_N,
// CUBLAS_OP_N,
// embed_dim,
// batches,
// embed_dim,
// static_cast<const void*>(&alpha),
// static_cast<const void*>(output_weights.data_ptr()),
// CUDA_R_16F,
// embed_dim,
// static_cast<const void*>(output_grads.data_ptr()),
// CUDA_R_16F,
// embed_dim,
// static_cast<const void*>(&beta),
// static_cast<void*>(output_lin_grads.data_ptr()),
// CUDA_R_16F,
// embed_dim,
// CUDA_R_32F,
// CUBLAS_GEMM_DEFAULT_TENSOR_OP));
// Output Linear Wgrad // Output Linear Wgrad
// TODO (OK)
THCublasCheck(rocblas_gemm_ex(handle, THCublasCheck(rocblas_gemm_ex(handle,
CUBLAS_OP_N, CUBLAS_OP_N,
CUBLAS_OP_T, CUBLAS_OP_T,
...@@ -447,29 +342,9 @@ std::vector<torch::Tensor> bwd_cuda( ...@@ -447,29 +342,9 @@ std::vector<torch::Tensor> bwd_cuda(
algo, algo,
solution_index, solution_index,
flags)); flags));
// THCublasCheck(cublasGemmEx(handle,
// CUBLAS_OP_N,
// CUBLAS_OP_T,
// embed_dim,
// embed_dim,
// batches,
// static_cast<const void*>(&alpha),
// static_cast<const void*>(matmul2_results.data_ptr()),
// CUDA_R_16F,
// embed_dim,
// static_cast<const void*>(output_grads.data_ptr()),
// CUDA_R_16F,
// embed_dim,
// static_cast<const void*>(&beta),
// static_cast<void*>(output_weight_grads.data_ptr()),
// CUDA_R_16F,
// embed_dim,
// CUDA_R_32F,
// CUBLAS_GEMM_DEFAULT_TENSOR_OP));
auto output_bias_grads = output_grads.view({-1, embed_dim}) .sum(0, false); auto output_bias_grads = output_grads.view({-1, embed_dim}) .sum(0, false);
// MatMul2 Dgrad1 // MatMul2 Dgrad1
// TODO (OK)
gemm_switch_fp32accum( state, gemm_switch_fp32accum( state,
a_layout_t, a_layout_t,
b_layout_n, b_layout_n,
...@@ -491,27 +366,8 @@ std::vector<torch::Tensor> bwd_cuda( ...@@ -491,27 +366,8 @@ std::vector<torch::Tensor> bwd_cuda(
k_seq_len, k_seq_len,
k_seq_len*q_seq_len, k_seq_len*q_seq_len,
attn_batches); attn_batches);
// gemm_switch_fp32accum( state,
// a_layout_t,
// b_layout_n,
// k_seq_len,
// q_seq_len,
// head_dim,
// alpha,
// static_cast<const half*>(v_lin_results_ptr),
// lead_dim,
// batch_stride,
// static_cast<const half*>(output_lin_grads.data_ptr()),
// head_dim*attn_batches,
// head_dim,
// beta,
// static_cast<half*>(matmul2_grads.data_ptr()),
// k_seq_len,
// k_seq_len*q_seq_len,
// attn_batches);
// Matmul2 Dgrad2 // Matmul2 Dgrad2
// TODO (OK)
gemm_switch_fp32accum( state, gemm_switch_fp32accum( state,
a_layout_n, a_layout_n,
b_layout_t, b_layout_t,
...@@ -533,24 +389,6 @@ std::vector<torch::Tensor> bwd_cuda( ...@@ -533,24 +389,6 @@ std::vector<torch::Tensor> bwd_cuda(
lead_dim, lead_dim,
batch_stride, batch_stride,
attn_batches); attn_batches);
// gemm_switch_fp32accum( state,
// a_layout_n,
// b_layout_t,
// head_dim,
// k_seq_len,
// q_seq_len,
// alpha,
// static_cast<const half*>(output_lin_grads.data_ptr()),
// head_dim*attn_batches,
// head_dim,
// static_cast<const half*>(dropout_results.data_ptr()),
// k_seq_len,
// k_seq_len*q_seq_len,
// beta,
// v_lin_grads_ptr,
// lead_dim,
// batch_stride,
// attn_batches);
// Apply Dropout Mask and Scale by Dropout Probability // Apply Dropout Mask and Scale by Dropout Probability
// Softmax Grad // Softmax Grad
...@@ -565,7 +403,6 @@ std::vector<torch::Tensor> bwd_cuda( ...@@ -565,7 +403,6 @@ std::vector<torch::Tensor> bwd_cuda(
attn_batches*q_seq_len, stream); attn_batches*q_seq_len, stream);
// Matmul1 Dgrad1 // Matmul1 Dgrad1
// TODO (OK)
gemm_switch_fp32accum( state, gemm_switch_fp32accum( state,
a_layout_n, a_layout_n,
b_layout_n, b_layout_n,
...@@ -587,27 +424,8 @@ std::vector<torch::Tensor> bwd_cuda( ...@@ -587,27 +424,8 @@ std::vector<torch::Tensor> bwd_cuda(
lead_dim, lead_dim,
batch_stride, batch_stride,
attn_batches); attn_batches);
// gemm_switch_fp32accum( state,
// a_layout_n,
// b_layout_n,
// head_dim,
// q_seq_len,
// k_seq_len,
// scale,
// k_lin_results_ptr,
// lead_dim,
// batch_stride,
// static_cast<half*>(matmul2_grads.data_ptr()),
// k_seq_len,
// k_seq_len*q_seq_len,
// beta,
// q_lin_grads_ptr,
// lead_dim,
// batch_stride,
// attn_batches);
// Matmul1 Dgrad2 // Matmul1 Dgrad2
// TODO (OK)
gemm_switch_fp32accum( state, gemm_switch_fp32accum( state,
a_layout_n, a_layout_n,
b_layout_t, b_layout_t,
...@@ -629,26 +447,7 @@ std::vector<torch::Tensor> bwd_cuda( ...@@ -629,26 +447,7 @@ std::vector<torch::Tensor> bwd_cuda(
lead_dim, lead_dim,
batch_stride, batch_stride,
attn_batches); attn_batches);
// gemm_switch_fp32accum( state,
// a_layout_n,
// b_layout_t,
// head_dim,
// k_seq_len,
// q_seq_len,
// scale,
// q_lin_results_ptr,
// lead_dim,
// batch_stride,
// static_cast<half*>(matmul2_grads.data_ptr()),
// k_seq_len,
// k_seq_len*q_seq_len,
// beta,
// k_lin_grads_ptr,
// lead_dim,
// batch_stride,
// attn_batches);
// Input Linear Dgrad // Input Linear Dgrad
// TODO (OK)
THCublasCheck(rocblas_gemm_ex(handle, THCublasCheck(rocblas_gemm_ex(handle,
CUBLAS_OP_N, CUBLAS_OP_N,
CUBLAS_OP_N, CUBLAS_OP_N,
...@@ -673,30 +472,8 @@ std::vector<torch::Tensor> bwd_cuda( ...@@ -673,30 +472,8 @@ std::vector<torch::Tensor> bwd_cuda(
algo, algo,
solution_index, solution_index,
flags)); flags));
// THCublasCheck(cublasGemmEx(handle,
// CUBLAS_OP_N,
// CUBLAS_OP_N,
// embed_dim,
// batches,
// output_lin_dim,
// static_cast<const void*>(&alpha),
// static_cast<const void*>(input_weights.data_ptr()),
// CUDA_R_16F,
// embed_dim,
// static_cast<const void*>(input_lin_output_grads.data_ptr()),
// //static_cast<const void*>(q_lin_grads_ptr),
// CUDA_R_16F,
// output_lin_dim,
// static_cast<const void*>(&beta),
// static_cast<void*>(input_grads.data_ptr()),
// CUDA_R_16F,
// embed_dim,
// CUDA_R_32F,
// //CUBLAS_GEMM_ALGO10_TENSOR_OP));
// CUBLAS_GEMM_DEFAULT_TENSOR_OP));
// Input Linear Wgrad // Input Linear Wgrad
// TODO (OK)
THCublasCheck(rocblas_gemm_ex(handle, THCublasCheck(rocblas_gemm_ex(handle,
CUBLAS_OP_N, CUBLAS_OP_N,
CUBLAS_OP_T, CUBLAS_OP_T,
...@@ -721,29 +498,8 @@ std::vector<torch::Tensor> bwd_cuda( ...@@ -721,29 +498,8 @@ std::vector<torch::Tensor> bwd_cuda(
algo, algo,
solution_index, solution_index,
flags)); flags));
// THCublasCheck(cublasGemmEx(handle,
// CUBLAS_OP_N,
// CUBLAS_OP_T,
// embed_dim,
// output_lin_dim,
// batches,
// static_cast<const void*>(&alpha),
// static_cast<const void*>(inputs.data_ptr()),
// CUDA_R_16F,
// embed_dim,
// static_cast<const void*>(q_lin_grads_ptr),
// CUDA_R_16F,
// output_lin_dim,
// static_cast<const void*>(&beta),
// static_cast<void*>(input_weight_grads.data_ptr()),
// CUDA_R_16F,
// embed_dim,
// CUDA_R_32F,
// CUBLAS_GEMM_DEFAULT_TENSOR_OP));
auto input_bias_grads = input_lin_output_grads.view({-1, output_lin_dim}).sum(0, false); auto input_bias_grads = input_lin_output_grads.view({-1, output_lin_dim}).sum(0, false);
// TODO (OK)
// THCublasCheck(cublasSetMathMode(handle, CUBLAS_DEFAULT_MATH));
return { return {
input_grads, input_grads,
...@@ -754,6 +510,6 @@ std::vector<torch::Tensor> bwd_cuda( ...@@ -754,6 +510,6 @@ std::vector<torch::Tensor> bwd_cuda(
}; };
} }
} // end namespace cublas_gemmex } // end namespace rocblas_gemmex
} // end namespace self } // end namespace self
} // end namespace multihead_attn } // end namespace multihead_attn
...@@ -3,7 +3,7 @@ ...@@ -3,7 +3,7 @@
namespace multihead_attn { namespace multihead_attn {
namespace self { namespace self {
namespace rocblas_gemm_ex { namespace rocblas_gemmex {
std::vector<torch::Tensor> fwd_cuda( std::vector<torch::Tensor> fwd_cuda(
bool use_time_mask, bool use_time_mask,
...@@ -126,7 +126,7 @@ std::vector<torch::Tensor> bwd( ...@@ -126,7 +126,7 @@ std::vector<torch::Tensor> bwd(
} // end namespace multihead_attn } // end namespace multihead_attn
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) { PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("forward", &multihead_attn::self::rocblas_gemm_ex::fwd, "Self Multihead Attention Forward."); m.def("forward", &multihead_attn::self::rocblas_gemmex::fwd, "Self Multihead Attention Forward.");
m.def("backward", &multihead_attn::self::rocblas_gemm_ex::bwd, "Self Multihead Attention Backward."); m.def("backward", &multihead_attn::self::rocblas_gemmex::bwd, "Self Multihead Attention Backward.");
} }
...@@ -24,7 +24,7 @@ extern THCState *state; ...@@ -24,7 +24,7 @@ extern THCState *state;
namespace multihead_attn { namespace multihead_attn {
namespace self { namespace self {
namespace cublas_gemmex { namespace rocblas_gemmex {
std::vector<torch::Tensor> fwd_cuda( std::vector<torch::Tensor> fwd_cuda(
bool use_time_mask, bool use_time_mask,
...@@ -80,10 +80,8 @@ std::vector<torch::Tensor> fwd_cuda( ...@@ -80,10 +80,8 @@ std::vector<torch::Tensor> fwd_cuda(
char a_layout_t{'t'}; char a_layout_t{'t'};
char a_layout_n{'n'}; char a_layout_n{'n'};
char b_layout_n{'n'}; char b_layout_n{'n'};
// TODO (OK)
// THCublasCheck(cublasSetMathMode(handle, CUBLAS_TENSOR_OP_MATH));
// Input Linear Fwd // Input Linear Fwd
// TODO (OK)
THCublasCheck(rocblas_gemm_ex(handle, THCublasCheck(rocblas_gemm_ex(handle,
CUBLAS_OP_T, CUBLAS_OP_T,
CUBLAS_OP_N, CUBLAS_OP_N,
...@@ -108,28 +106,8 @@ std::vector<torch::Tensor> fwd_cuda( ...@@ -108,28 +106,8 @@ std::vector<torch::Tensor> fwd_cuda(
algo, algo,
solution_index, solution_index,
flags)); flags));
// THCublasCheck(cublasGemmEx(handle,
// CUBLAS_OP_T,
// CUBLAS_OP_N,
// output_lin_dim,
// batches,
// embed_dim,
// static_cast<const void*>(&alpha),
// static_cast<const void*>(input_weights.data_ptr()),
// CUDA_R_16F,
// embed_dim,
// static_cast<const void*>(inputs.data_ptr()),
// CUDA_R_16F,
// embed_dim,
// static_cast<const void*>(&beta),
// q_lin_results_ptr,
// CUDA_R_16F,
// output_lin_dim,
// CUDA_R_32F,
// CUBLAS_GEMM_DEFAULT_TENSOR_OP));
// MatMul1 of Dot-Product Attention Plus scaling by 1/Sqrt(head size) // MatMul1 of Dot-Product Attention Plus scaling by 1/Sqrt(head size)
// TODO (OK)
gemm_switch_fp32accum( state, gemm_switch_fp32accum( state,
a_layout_t, a_layout_t,
b_layout_n, b_layout_n,
...@@ -151,24 +129,6 @@ std::vector<torch::Tensor> fwd_cuda( ...@@ -151,24 +129,6 @@ std::vector<torch::Tensor> fwd_cuda(
k_seq_len, k_seq_len,
k_seq_len*q_seq_len, k_seq_len*q_seq_len,
attn_batches); attn_batches);
// gemm_switch_fp32accum( state,
// a_layout_t,
// b_layout_n,
// k_seq_len,
// q_seq_len,
// head_dim,
// scale,
// static_cast<const half*>(k_lin_results_ptr),
// lead_dim,
// batch_stride,
// static_cast<const half*>(q_lin_results_ptr),
// lead_dim,
// batch_stride,
// beta,
// static_cast<half*>(softmax_results_ptr),
// k_seq_len,
// k_seq_len*q_seq_len,
// attn_batches);
// Padded Softmax // Padded Softmax
bool softmax_success = false; bool softmax_success = false;
...@@ -212,7 +172,6 @@ std::vector<torch::Tensor> fwd_cuda( ...@@ -212,7 +172,6 @@ std::vector<torch::Tensor> fwd_cuda(
} }
// Matmul2 // Matmul2
// TODO (OK)
gemm_switch_fp32accum( state, gemm_switch_fp32accum( state,
a_layout_n, a_layout_n,
b_layout_n, b_layout_n,
...@@ -234,27 +193,8 @@ std::vector<torch::Tensor> fwd_cuda( ...@@ -234,27 +193,8 @@ std::vector<torch::Tensor> fwd_cuda(
head_dim*attn_batches, head_dim*attn_batches,
head_dim, head_dim,
attn_batches); attn_batches);
// gemm_switch_fp32accum( state,
// a_layout_n,
// b_layout_n,
// head_dim,
// q_seq_len,
// k_seq_len,
// alpha,
// static_cast<const half*>(v_lin_results_ptr),
// lead_dim,
// batch_stride,
// (is_training) ? static_cast<const half*>(dropout_results.data_ptr()) : static_cast<const half*>(softmax_results.data_ptr()) ,
// k_seq_len,
// k_seq_len*q_seq_len,
// beta,
// static_cast<half*>(matmul2_results.data_ptr()),
// head_dim*attn_batches,
// head_dim,
// attn_batches);
// Output Linear // Output Linear
// TODO
THCublasCheck(rocblas_gemm_ex(handle, THCublasCheck(rocblas_gemm_ex(handle,
CUBLAS_OP_T, CUBLAS_OP_T,
CUBLAS_OP_N, CUBLAS_OP_N,
...@@ -279,27 +219,6 @@ std::vector<torch::Tensor> fwd_cuda( ...@@ -279,27 +219,6 @@ std::vector<torch::Tensor> fwd_cuda(
algo, algo,
solution_index, solution_index,
flags)); flags));
// THCublasCheck(cublasGemmEx(handle,
// CUBLAS_OP_T,
// CUBLAS_OP_N,
// embed_dim,
// batches,
// embed_dim,
// static_cast<const void*>(&alpha),
// static_cast<const void*>(output_weights.data_ptr()),
// CUDA_R_16F,
// embed_dim,
// static_cast<const void*>(matmul2_results.data_ptr()),
// CUDA_R_16F,
// embed_dim,
// static_cast<const void*>(&beta),
// static_cast<void*>(outputs.data_ptr()),
// CUDA_R_16F,
// embed_dim,
// CUDA_R_32F,
// CUBLAS_GEMM_DEFAULT_TENSOR_OP));
// TODO (OK)
// THCublasCheck(cublasSetMathMode(handle, CUBLAS_DEFAULT_MATH));
return { return {
input_lin_results, input_lin_results,
...@@ -367,11 +286,8 @@ std::vector<torch::Tensor> bwd_cuda( ...@@ -367,11 +286,8 @@ std::vector<torch::Tensor> bwd_cuda(
char a_layout_t{'t'}; char a_layout_t{'t'};
char b_layout_n{'n'}; char b_layout_n{'n'};
char b_layout_t{'t'}; char b_layout_t{'t'};
// TODO (OK)
// THCublasCheck(cublasSetMathMode(handle, CUBLAS_TENSOR_OP_MATH));
// Output Linear Dgrad // Output Linear Dgrad
// TODO (OK)
THCublasCheck(rocblas_gemm_ex(handle, THCublasCheck(rocblas_gemm_ex(handle,
CUBLAS_OP_N, CUBLAS_OP_N,
CUBLAS_OP_N, CUBLAS_OP_N,
...@@ -396,28 +312,8 @@ std::vector<torch::Tensor> bwd_cuda( ...@@ -396,28 +312,8 @@ std::vector<torch::Tensor> bwd_cuda(
algo, algo,
solution_index, solution_index,
flags)); flags));
// THCublasCheck(cublasGemmEx(handle,
// CUBLAS_OP_N,
// CUBLAS_OP_N,
// embed_dim,
// batches,
// embed_dim,
// static_cast<const void*>(&alpha),
// static_cast<const void*>(output_weights.data_ptr()),
// CUDA_R_16F,
// embed_dim,
// static_cast<const void*>(output_grads.data_ptr()),
// CUDA_R_16F,
// embed_dim,
// static_cast<const void*>(&beta),
// static_cast<void*>(output_lin_grads.data_ptr()),
// CUDA_R_16F,
// embed_dim,
// CUDA_R_32F,
// CUBLAS_GEMM_DEFAULT_TENSOR_OP));
// Output Linear Wgrad // Output Linear Wgrad
// TODO (OOK)
THCublasCheck(rocblas_gemm_ex(handle, THCublasCheck(rocblas_gemm_ex(handle,
CUBLAS_OP_N, CUBLAS_OP_N,
CUBLAS_OP_T, CUBLAS_OP_T,
...@@ -442,28 +338,8 @@ std::vector<torch::Tensor> bwd_cuda( ...@@ -442,28 +338,8 @@ std::vector<torch::Tensor> bwd_cuda(
algo, algo,
solution_index, solution_index,
flags)); flags));
// THCublasCheck(cublasGemmEx(handle,
// CUBLAS_OP_N,
// CUBLAS_OP_T,
// embed_dim,
// embed_dim,
// batches,
// static_cast<const void*>(&alpha),
// static_cast<const void*>(matmul2_results.data_ptr()),
// CUDA_R_16F,
// embed_dim,
// static_cast<const void*>(output_grads.data_ptr()),
// CUDA_R_16F,
// embed_dim,
// static_cast<const void*>(&beta),
// static_cast<void*>(output_weight_grads.data_ptr()),
// CUDA_R_16F,
// embed_dim,
// CUDA_R_32F,
// CUBLAS_GEMM_DEFAULT_TENSOR_OP));
// MatMul2 Dgrad1 // MatMul2 Dgrad1
// TODO (OK)
gemm_switch_fp32accum( state, gemm_switch_fp32accum( state,
a_layout_t, a_layout_t,
b_layout_n, b_layout_n,
...@@ -485,27 +361,8 @@ std::vector<torch::Tensor> bwd_cuda( ...@@ -485,27 +361,8 @@ std::vector<torch::Tensor> bwd_cuda(
k_seq_len, k_seq_len,
k_seq_len*q_seq_len, k_seq_len*q_seq_len,
attn_batches); attn_batches);
// gemm_switch_fp32accum( state,
// a_layout_t,
// b_layout_n,
// k_seq_len,
// q_seq_len,
// head_dim,
// alpha,
// static_cast<const half*>(v_lin_results_ptr),
// lead_dim,
// batch_stride,
// static_cast<const half*>(output_lin_grads.data_ptr()),
// head_dim*attn_batches,
// head_dim,
// beta,
// static_cast<half*>(matmul2_grads.data_ptr()),
// k_seq_len,
// k_seq_len*q_seq_len,
// attn_batches);
// Matmul2 Dgrad2 // Matmul2 Dgrad2
// TODO (OK)
gemm_switch_fp32accum( state, gemm_switch_fp32accum( state,
a_layout_n, a_layout_n,
b_layout_t, b_layout_t,
...@@ -527,24 +384,6 @@ std::vector<torch::Tensor> bwd_cuda( ...@@ -527,24 +384,6 @@ std::vector<torch::Tensor> bwd_cuda(
lead_dim, lead_dim,
batch_stride, batch_stride,
attn_batches); attn_batches);
// gemm_switch_fp32accum( state,
// a_layout_n,
// b_layout_t,
// head_dim,
// k_seq_len,
// q_seq_len,
// alpha,
// static_cast<const half*>(output_lin_grads.data_ptr()),
// head_dim*attn_batches,
// head_dim,
// static_cast<const half*>(dropout_results.data_ptr()),
// k_seq_len,
// k_seq_len*q_seq_len,
// beta,
// v_lin_grads_ptr,
// lead_dim,
// batch_stride,
// attn_batches);
// Apply Dropout Mask and Scale by Dropout Probability // Apply Dropout Mask and Scale by Dropout Probability
apex_masked_scale_cuda<at::Half,float,uint32_t>( apex_masked_scale_cuda<at::Half,float,uint32_t>(
...@@ -566,7 +405,6 @@ std::vector<torch::Tensor> bwd_cuda( ...@@ -566,7 +405,6 @@ std::vector<torch::Tensor> bwd_cuda(
assert(softmax_success); assert(softmax_success);
// Matmul1 Dgrad1 // Matmul1 Dgrad1
// TODO (OK)
gemm_switch_fp32accum( state, gemm_switch_fp32accum( state,
a_layout_n, a_layout_n,
b_layout_n, b_layout_n,
...@@ -588,27 +426,8 @@ std::vector<torch::Tensor> bwd_cuda( ...@@ -588,27 +426,8 @@ std::vector<torch::Tensor> bwd_cuda(
lead_dim, lead_dim,
batch_stride, batch_stride,
attn_batches); attn_batches);
// gemm_switch_fp32accum( state,
// a_layout_n,
// b_layout_n,
// head_dim,
// q_seq_len,
// k_seq_len,
// scale,
// k_lin_results_ptr,
// lead_dim,
// batch_stride,
// static_cast<half*>(matmul2_grads.data_ptr()),
// k_seq_len,
// k_seq_len*q_seq_len,
// beta,
// q_lin_grads_ptr,
// lead_dim,
// batch_stride,
// attn_batches);
// Matmul1 Dgrad2 // Matmul1 Dgrad2
// TODO (OK)
gemm_switch_fp32accum( state, gemm_switch_fp32accum( state,
a_layout_n, a_layout_n,
b_layout_t, b_layout_t,
...@@ -630,27 +449,8 @@ std::vector<torch::Tensor> bwd_cuda( ...@@ -630,27 +449,8 @@ std::vector<torch::Tensor> bwd_cuda(
lead_dim, lead_dim,
batch_stride, batch_stride,
attn_batches); attn_batches);
// gemm_switch_fp32accum( state,
// a_layout_n,
// b_layout_t,
// head_dim,
// k_seq_len,
// q_seq_len,
// scale,
// q_lin_results_ptr,
// lead_dim,
// batch_stride,
// static_cast<half*>(matmul2_grads.data_ptr()),
// k_seq_len,
// k_seq_len*q_seq_len,
// beta,
// k_lin_grads_ptr,
// lead_dim,
// batch_stride,
// attn_batches);
// Input Linear Dgrad // Input Linear Dgrad
// TODO (OK)
THCublasCheck(rocblas_gemm_ex(handle, THCublasCheck(rocblas_gemm_ex(handle,
CUBLAS_OP_N, CUBLAS_OP_N,
CUBLAS_OP_N, CUBLAS_OP_N,
...@@ -675,28 +475,8 @@ std::vector<torch::Tensor> bwd_cuda( ...@@ -675,28 +475,8 @@ std::vector<torch::Tensor> bwd_cuda(
algo, algo,
solution_index, solution_index,
flags)); flags));
// THCublasCheck(cublasGemmEx(handle,
// CUBLAS_OP_N,
// CUBLAS_OP_N,
// embed_dim,
// batches,
// output_lin_dim,
// static_cast<const void*>(&alpha),
// static_cast<const void*>(input_weights.data_ptr()),
// CUDA_R_16F,
// embed_dim,
// static_cast<const void*>(q_lin_grads_ptr),
// CUDA_R_16F,
// output_lin_dim,
// static_cast<const void*>(&beta),
// static_cast<void*>(input_grads.data_ptr()),
// CUDA_R_16F,
// embed_dim,
// CUDA_R_32F,
// CUBLAS_GEMM_DEFAULT_TENSOR_OP));
// Input Linear Wgrad // Input Linear Wgrad
// TODO (OK)
THCublasCheck(rocblas_gemm_ex(handle, THCublasCheck(rocblas_gemm_ex(handle,
CUBLAS_OP_N, CUBLAS_OP_N,
CUBLAS_OP_T, CUBLAS_OP_T,
...@@ -721,27 +501,6 @@ std::vector<torch::Tensor> bwd_cuda( ...@@ -721,27 +501,6 @@ std::vector<torch::Tensor> bwd_cuda(
algo, algo,
solution_index, solution_index,
flags)); flags));
// THCublasCheck(cublasGemmEx(handle,
// CUBLAS_OP_N,
// CUBLAS_OP_T,
// embed_dim,
// output_lin_dim,
// batches,
// static_cast<const void*>(&alpha),
// static_cast<const void*>(inputs.data_ptr()),
// CUDA_R_16F,
// embed_dim,
// static_cast<const void*>(q_lin_grads_ptr),
// CUDA_R_16F,
// output_lin_dim,
// static_cast<const void*>(&beta),
// static_cast<void*>(input_weight_grads.data_ptr()),
// CUDA_R_16F,
// embed_dim,
// CUDA_R_32F,
// CUBLAS_GEMM_DEFAULT_TENSOR_OP));
// TODO (OK)
// THCublasCheck(cublasSetMathMode(handle, CUBLAS_DEFAULT_MATH));
return { return {
input_grads, input_grads,
...@@ -750,6 +509,6 @@ std::vector<torch::Tensor> bwd_cuda( ...@@ -750,6 +509,6 @@ std::vector<torch::Tensor> bwd_cuda(
}; };
} }
} // end namespace cublas_gemmex } // end namespace rocblas_gemmex
} // end namespace self } // end namespace self
} // end namespace multihead_attn } // end namespace multihead_attn
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment