Unverified Commit 8e8dd35d authored by mcarilli's avatar mcarilli Committed by GitHub
Browse files

Merge pull request #148 from NVIDIA/ekrimer_add_groupbn_test

adding a test and example for sync (group) bn with group_size<world_size
parents 187ed33e 37cd5dfd
......@@ -51,3 +51,42 @@ def convert_syncbn_model(module, process_group=None, channel_last=False):
# TODO(jie) should I delete model explicitly?
del module
return mod
def create_syncbn_process_group(group_size):
'''
Creates process groups to be used for syncbn of a give ``group_size`` and returns
process group that current GPU participates in.
``group_size`` must divide the total number of GPUs (world_size).
``group_size`` of 0 would be considered as =world_size. In this case ``None`` will be returned.
``group_size`` of 1 would be equivalent to using non-sync bn, but will still carry the overhead.
Args:
group_size (int): number of GPU's to collaborate for sync bn
Example::
>>> # model is an instance of torch.nn.Module
>>> import apex
>>> group = apex.parallel.create_syncbn_process_group(group_size)
'''
if group_size==0:
return None
world_size = torch.distributed.get_world_size()
assert(world_size >= group_size)
assert(world_size % group_size == 0)
group=None
for group_num in (range(world_size//group_size)):
group_ids = range(group_num*group_size, (group_num+1)*group_size)
cur_group = torch.distributed.new_group(ranks=group_ids)
if (torch.distributed.get_rank()//group_size == group_num):
group = cur_group
#can not drop out and return here, every process must go through creation of all subgroups
assert(group is not None)
return group
import torch
import numpy as np
import apex
import syncbn
import os
import argparse
import torch.optim as optim
def compare(desc, inp1, inp2, error):
a = inp1.clone().detach().cpu().numpy()
b = inp2.clone().detach().cpu().numpy()
close = np.allclose(a,b, error, error)
if not close:
print(desc, close)
z = a - b
index = (np.abs(z) >= error + error * np.abs(b)).nonzero()
print("dif : ", z[index])
print("inp1 : ", a[index])
print("inp2 : ", b[index])
return close
feature_size = 10
space_size = 40
batch_size = 32
from apex.parallel import DistributedDataParallel as DDP
parser = argparse.ArgumentParser()
parser.add_argument("--local_rank", default=0, type=int)
parser.add_argument("--fp16", action='store_true', default=False)
parser.add_argument("--fp64", action='store_true', default=False)
parser.add_argument("--group_size", default=0, type=int)
args = parser.parse_args()
try:
args.world_size = int(os.environ['WORLD_SIZE'])
except:
print("This is a multi-gpu test. To run it please use 'python -m torch.distributed.launch --nproc_per_node=<num gpus> test_groups.py <more options>'")
exit(1)
torch.cuda.set_device(args.local_rank)
torch.distributed.init_process_group(backend='nccl', init_method='env://')
start = (args.local_rank%args.group_size) * batch_size//args.group_size
finish = (args.local_rank%args.group_size + 1) * batch_size//args.group_size
error = 1e-5
dtype = np.float32
if args.fp16:
error = 1e-3
dtype = np.float16
elif args.fp64:
error = 1e-8
dtype = np.float64
np.random.seed(18 + args.local_rank//args.group_size)
inp = np.random.randn(batch_size, feature_size, space_size, space_size).astype(dtype)
grad = np.random.randn(batch_size, feature_size, space_size, space_size).astype(dtype)
weight = np.random.randn(feature_size).astype(dtype)
bias = np.random.randn(feature_size).astype(dtype)
type_tensor = torch.cuda.FloatTensor
if args.fp16:
type_tensor = torch.cuda.HalfTensor
if args.fp64:
type_tensor = torch.cuda.DoubleTensor
ref_tensor = torch.cuda.DoubleTensor
inp_t = type_tensor(inp)
weight_t = type_tensor(weight)
bias_t = type_tensor(bias)
inp_r = ref_tensor(inp.transpose(1, 0, 2, 3).reshape(feature_size, -1))
inp2_r = ref_tensor(inp)
weight_r = ref_tensor(weight).view(-1, 1, 1)
bias_r = ref_tensor(bias).view(-1, 1, 1)
grad_output_t = type_tensor(grad)
m = inp_r.mean(1)
b_v = inp_r.var(1, unbiased=False)
unb_v = inp_r.var(1, unbiased=True)
eps = 1e-5
mean, var_biased = syncbn.welford_mean_var(inp_t)
inv_std = 1.0 / torch.sqrt(var_biased + eps)
bn = torch.nn.BatchNorm2d(feature_size).cuda()
bn.momentum = 1.0
bn.weight.data = weight_t.clone()
bn.bias.data = bias_t.clone()
if args.fp16:
bn.half()
if args.fp64:
bn.double()
bn = DDP(bn)
inp_bn = inp_t.clone().requires_grad_()
grad_bn = grad_output_t.clone().detach()
out_bn = bn(inp_bn)
out_bn.backward(grad_bn)
# compensating the averaging over processes done by DDP
# in order to produce mathematically equivalent result
# https://github.com/NVIDIA/apex/issues/134#issuecomment-458307368
for param in bn.parameters():
param.grad = param.grad / args.group_size
bn_opt = optim.SGD(bn.parameters(), lr=1.0)
sbn = apex.parallel.SyncBatchNorm(feature_size, process_group=apex.parallel.create_syncbn_process_group(args.group_size)).cuda()
sbn.momentum = 1.0
sbn.weight.data = weight_t.clone()
sbn.bias.data = bias_t.clone()
if args.fp16:
sbn.half()
if args.fp64:
sbn.double()
sbn = DDP(sbn)
sbn_opt = optim.SGD(sbn.parameters(), lr=1.0)
inp_sbn = inp_t.clone().requires_grad_()
grad_sbn = grad_output_t.clone().detach()
out_sbn = sbn(inp_sbn[start:finish])
out_sbn.backward(grad_sbn[start:finish])
sbn_result = True
bn_result = True
if args.local_rank == 0:
sbn_result = compare("comparing mean: ", mean, m, error) and sbn_result
sbn_result = compare("comparing biased variance: ", var_biased, b_v, error) and sbn_result
out = syncbn.batchnorm_forward(inp_t, mean, inv_std, weight_t, bias_t)
out_r = weight_r * (inp2_r - m.view(-1, 1, 1)) * torch.rsqrt(b_v.view(-1,1,1) + eps) + bias_r
if args.local_rank == 0:
sbn_result = compare("comparing output: ", out, out_r, error) and sbn_result
compare("comparing bn output: ", out_bn, out_r, error)
grad_output_t = type_tensor(grad)
grad_output_r = ref_tensor(grad.transpose(1, 0, 2, 3).reshape(feature_size, -1))
grad_output2_r = ref_tensor(grad)
grad_bias_r = grad_output_r.sum(1)
grad_weight_r = ((inp2_r - m.view(-1, 1, 1)) * torch.rsqrt(b_v.view(-1,1,1) + eps) * grad_output2_r).transpose(1,0).contiguous().view(feature_size, -1).sum(1)
mean_dy_r = grad_output_r.mean(1)
mean_dy_xmu_r = ((inp2_r - m.view(-1, 1, 1)) * grad_output2_r).transpose(1,0).contiguous().view(feature_size, -1).mean(1)
grad_input_r = (grad_output2_r - mean_dy_r.view(-1, 1, 1) - (inp2_r - m.view(-1, 1, 1)) / (b_v.view(-1,1,1) + eps) * mean_dy_xmu_r.view(-1, 1, 1) ) * torch.rsqrt(b_v.view(-1,1,1) + eps) * weight_r.view(-1,1,1)
mean_dy, mean_dy_xmu, grad_weight, grad_bias = syncbn.reduce_bn(grad_output_t, inp_t, mean, inv_std, weight_t)
grad_input = syncbn.batchnorm_backward(grad_output_t, inp_t, mean, inv_std, weight_t, mean_dy, mean_dy_xmu)
if args.local_rank == 0:
sbn_result = compare("comparing bias grad: ", grad_bias, grad_bias_r, error) and sbn_result
sbn_result = compare("comparing weight grad: ", grad_weight, grad_weight_r, error) and sbn_result
sbn_result = compare("comparing mean_dy grad: ", mean_dy, mean_dy_r, error) and sbn_result
sbn_result = compare("comparing mean_dy_xmu grad: ", mean_dy_xmu, mean_dy_xmu_r, error) and sbn_result
sbn_result = compare("comparing input grad: ", grad_input, grad_input_r, error) and sbn_result
compare("comparing bn input grad: ", inp_bn.grad, grad_input_r, error)
if args.local_rank == 0:
sbn_result = compare("comparing running_mean: ", bn.module.running_mean.data, sbn.module.running_mean.data, error) and sbn_result
sbn_result = compare("comparing running_variance: ", bn.module.running_var.data, sbn.module.running_var.data, error) and sbn_result
# execute by both
compare("comparing layers output: ", out_bn[start:finish], out_sbn, error) and sbn_result
compare("comparing layers grad_input: ", inp_bn.grad[start:finish], inp_sbn.grad[start:finish], error) and sbn_result
bn_opt.step()
sbn_opt.step()
if args.local_rank == 0:
compare("comparing bn vs sbn bias: ", bn.module.bias, sbn.module.bias, error)
compare("comparing bn vs sbn weight: ", bn.module.weight, sbn.module.weight, error)
if sbn_result:
print("====SBN group test passed")
else:
print("*SBN group test failed*")
python single_gpu_unit_test.py
python -m torch.distributed.launch --nproc_per_node=2 two_gpu_unit_test.py
python -m torch.distributed.launch --nproc_per_node=2 two_gpu_unit_test.py --fp64
#beware, you need a system with at least 4 gpus to test group_size<world_size
python -m torch.distributed.launch --nproc_per_node=4 test_groups.py --group_size=2
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment