Commit 8818ba9e authored by Michael Carilli's avatar Michael Carilli
Browse files

Merge branch 'new_downscale_kernel'

parents 9288ba5c a5bc76db
......@@ -32,7 +32,7 @@ class LossScaler(object):
import amp_C
LossScaler.has_fused_kernel = True
LossScaler.scale_check_overflow_cuda = amp_C.scale_check_overflow
self._overflow_buf = torch.cuda.ByteTensor(1024,)
self._overflow_buf = torch.cuda.IntTensor([0])
except ImportError as err:
if not LossScaler.warned_no_fused_kernel:
print("Warning: Amp fused downscale kernel is unavailable, possibly because apex "
......@@ -53,7 +53,8 @@ class LossScaler(object):
if LossScaler.has_fused_kernel and p.grad.data.type() == "torch.cuda.FloatTensor":
LossScaler.scale_check_overflow_cuda(p.grad.data,
1./scale,
self._overflow_buf)
self._overflow_buf,
p.grad.data)
else:
if (p.grad.data.type() != "torch.cuda.FloatTensor"
and not LossScaler.warned_fp16_grad):
......@@ -69,7 +70,7 @@ class LossScaler(object):
# If the fused kernel is available, we only need one D2H memcopy and sync.
if LossScaler.has_fused_kernel and not self._has_overflow:
self._has_overflow = self._overflow_buf.any()
self._has_overflow = self._overflow_buf.item()
if self._has_overflow:
should_skip = True
......
#include <torch/extension.h>
void scale_check_overflow_cuda(const at::Tensor& d_grads, float scale, const at::Tensor& d_buf);
void scale_check_overflow_cuda(const at::Tensor& grads,
float scale,
const at::Tensor& d_buf,
const at::Tensor& downscaled_grads);
void scale_check_overflow(at::Tensor grads, float scale, at::Tensor overflow_buf)
void scale_check_overflow(at::Tensor grads,
float scale,
at::Tensor overflow_buf,
at::Tensor downscaled_grads)
// const at::optional<at::Tensor> downscaled_grads)
{
AT_CHECK(grads.type().is_cuda(), "grads must be a CUDA tensor");
AT_CHECK(grads.is_contiguous(), "grads must be contiguous");
AT_CHECK(overflow_buf.type().is_cuda(), "overflow_buf must be a CUDA tensor");
AT_CHECK(overflow_buf.is_contiguous(), "overflow_buf must be contiguous");
AT_CHECK(downscaled_grads.type().is_cuda(), "downscaled_grads must be a CUDA tensor");
AT_CHECK(downscaled_grads.is_contiguous(), "downscaled_grads must be contiguous");
// Make sure we are downscaling the FP32 master grads
AT_CHECK(grads.type().scalarType() == at::ScalarType::Float,
"grads supplied to scale_check_overflow should be fp32 (master grads).")
AT_CHECK(downscaled_grads.type().scalarType() == at::ScalarType::Float,
"The output grads supplied to scale_check_overflow should be fp32 (master grads).")
AT_CHECK(grads.numel() == downscaled_grads.numel(), "Input and output grads must be the same size.");
scale_check_overflow_cuda(grads, scale, overflow_buf);
scale_check_overflow_cuda(grads, scale, overflow_buf, downscaled_grads);
}
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
......
......@@ -4,101 +4,78 @@
#include <ATen/cuda/Exceptions.h>
#include <assert.h>
#include <cuda_runtime.h>
#define BLOCK_SIZE 1024
#define MAX_BLOCKS 1024
#define NBLOCKS 160
// It makes sense to lock the type to "float" here because the downscaling
// should only be applied to the FP32 master gradients. Also, if "in" were
// a different type, it would require divergent code for the vectorized load logic.
// It makes sense to lock the output type to fp32 because the downscaled
// grads should be master grads (and in the case of Amp, the params and their
// gradients should always be fp32.
// TODO:
// Update overflow check to use reduction from kernel_utils.cuh with
// ReduceOp from THCTensorMathReduce.cuh.
__global__ void scale_reduce_overflow
(float *in,
size_t n,
float scale,
uint8_t *overflow_out)
// This can be optimized with ILP but it's fine for now.
template<typename in_t>
__global__ void scale_reduce_overflow(in_t* in,
float* out,
int n,
float scale,
volatile int* overflow_global)
{
__shared__ uint8_t cta_overflow[BLOCK_SIZE];
__shared__ int overflow;
int tid = blockIdx.x * blockDim.x + threadIdx.x;
int stride = gridDim.x * blockDim.x;
int tid = blockIdx.x*blockDim.x + threadIdx.x;
int stride = gridDim.x*blockDim.x;
uint8_t my_overflow = 0;
for (int i = tid * 4; i < n; i+= stride * 4) {
if (i < (n - 3)) {
float4 f4 = ((float4*)in)[i / 4];
if (isfinite(f4.x)) {
f4.x *= scale;
} else {
my_overflow = 1;
}
if (isfinite(f4.y)) {
f4.y *= scale;
} else {
my_overflow = 1;
}
if (isfinite(f4.z)) {
f4.z *= scale;
} else {
my_overflow = 1;
}
if (isfinite(f4.w)) {
f4.w *= scale;
} else {
my_overflow = 1;
}
((float4*)in)[i / 4] = f4;
} else {
for (; i < n; ++i) {
if (isfinite(in[i])) {
in[i] *= scale;
} else {
my_overflow = 1;
}
}
}
}
// Non-divergent exit condition for the __syncthreads
for(int i = tid; i - threadIdx.x < n; i += stride)
{
if(threadIdx.x == 0)
overflow = *overflow_global;
int tIdx = threadIdx.x;
cta_overflow[tIdx] = my_overflow;
__syncthreads();
int participating = BLOCK_SIZE / 2;
while (participating > 0) {
if (tIdx < participating) {
cta_overflow[tIdx] = max(cta_overflow[tIdx],
cta_overflow[tIdx + participating]);
}
participating /= 2;
__syncthreads();
}
if (tIdx == 0) {
overflow_out[blockIdx.x] = max(cta_overflow[0],
overflow_out[blockIdx.x]);
if(overflow == 1)
break;
if(i < n)
{
float incoming_val = static_cast<float>(in[i]);
if(isfinite(incoming_val))
out[i] = incoming_val*scale;
else
*overflow_global = 1; // Blindly fire off a write. These will race but that's ok.
// This is NOT guaranteed to be seen immediately by thread 0 on the next iteration.
// I wonder if there's a way we can rig the short-circuiting with only one syncthreads.
// It's possible we can just lean on the cache (no smem or syncs) and still be fast.
}
}
}
void scale_check_overflow_cuda
(const at::Tensor& d_grads,
(const at::Tensor& grads,
float scale,
const at::Tensor& d_buf)
const at::Tensor& overflow_buf,
const at::Tensor& downscaled_grads)
{
using namespace at;
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
size_t n = d_grads.numel();
size_t buf_n = d_buf.numel();
int n = grads.numel();
// Lock the output (downscaled) type to float.
AT_DISPATCH_FLOATING_TYPES_AND_HALF(grads.type(),
"scale_check_overflow_cuda",
[&]
{
// using accscalar_t = acc_type<scalar_t, true>;
scale_reduce_overflow<<<NBLOCKS, BLOCK_SIZE, 0, stream>>>
(grads.data<scalar_t>(),
downscaled_grads.data<float>(),
n,
scale,
overflow_buf.data<int>());
});
int num_blks = min((int(n) + BLOCK_SIZE - 1) / BLOCK_SIZE,
MAX_BLOCKS);
assert(buf_n >= num_blks);
scale_reduce_overflow<<<num_blks, BLOCK_SIZE, 0, stream>>>
(d_grads.data<float>(),
n,
scale,
d_buf.data<uint8_t>());
AT_CUDA_CHECK(cudaGetLastError());
}
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment