Unverified Commit 59d2f7ac authored by Sudhakar Singh's avatar Sudhakar Singh Committed by GitHub
Browse files

Add unit tests for Fused NovoGrad (#1065)

* Add unit tests for fused-novograd

* Fix: tensors should reside on the same device

* Fix: Cudastream should be called on the same device on which the tensors reside on. Found this during debugging fused novograd multi-device unit test

* fixed issues mentioned in the comments
parent a651e2c2
......@@ -79,7 +79,9 @@ class FusedNovoGrad(torch.optim.Optimizer):
if multi_tensor_applier.available:
import amp_C
# Skip buffer
self._dummy_overflow_buf = torch.cuda.IntTensor([0])
# Creating the overflow buffer on the same device as the params tensors.
self._dummy_overflow_buf = torch.tensor([0], dtype=torch.int, device=self.param_groups[0]["params"][0].device)
self.multi_tensor_novograd = amp_C.multi_tensor_novograd
else:
raise RuntimeError('apex.optimizers.FusedNovoGrad requires cuda extensions')
......@@ -158,8 +160,9 @@ class FusedNovoGrad(torch.optim.Optimizer):
if 'exp_avg_sq' not in group:
group['exp_avg_sq'] = [None, None]
if group['init_zero']:
group['exp_avg_sq'][0] = torch.cuda.FloatTensor(len(g_16)).contiguous().fill_(0)
group['exp_avg_sq'][1] = torch.cuda.FloatTensor(len(g_32)).contiguous().fill_(0)
# Creating the following parameters on the same device as the params tensors.
group['exp_avg_sq'][0] = torch.cuda.FloatTensor(len(g_16), device=self.param_groups[0]["params"][0].device).contiguous().fill_(0)
group['exp_avg_sq'][1] = torch.cuda.FloatTensor(len(g_32), device=self.param_groups[0]["params"][0].device).contiguous().fill_(0)
else: # init with first step norm, so first blend have no effect
if group['norm_type'] == 0:
v_16 = [torch.max(torch.abs(g.to(torch.float32))).item() for g in g_16]
......@@ -169,8 +172,9 @@ class FusedNovoGrad(torch.optim.Optimizer):
v_32 = [torch.sum(torch.pow(g, 2)).sqrt().item() for g in g_32]
else:
raise RuntimeError('FusedNovoGrad only support l2/inf norm now.')
group['exp_avg_sq'][0] = torch.cuda.FloatTensor(v_16)
group['exp_avg_sq'][1] = torch.cuda.FloatTensor(v_32)
# Creating the following parameters on the same device as the params tensors.
group['exp_avg_sq'][0] = torch.cuda.FloatTensor(v_16, device=self.param_groups[0]["params"][0].device)
group['exp_avg_sq'][1] = torch.cuda.FloatTensor(v_32, device=self.param_groups[0]["params"][0].device)
else:
assert(len(g_16) == group['exp_avg_sq'][0].numel())
assert(len(g_32) == group['exp_avg_sq'][1].numel())
......
......@@ -427,6 +427,11 @@ void multi_tensor_norm_out_cuda(
// I could get rid of these by hacking the functor + multi tensor harness with persistence
// logic, but keeping it simple for now
auto ret = at::empty({1}, output.options());
// Adding the following device guard since it happens sometimes that the
// tensors are on one device and the cuda stream is on another device which
// results in ILLEGAL MEM ACCESS error.
const at::cuda::OptionalCUDAGuard device_guard(device_of(output));
auto stream = at::cuda::getCurrentCUDAStream();
cleanup_v2<<<ntensors, 512, 0, stream>>>(
output.DATA_PTR<float>(),
......
import torch
from torch.optim import Optimizer
import math
import apex
import unittest
from test_fused_optimizer import TestFusedOptimizer
from itertools import product
class Novograd(Optimizer):
"""
Implements Novograd algorithm.
Args:
params (iterable): iterable of parameters to optimize or dicts defining
parameter groups
lr (float, optional): learning rate (default: 1e-3)
betas (Tuple[float, float], optional): coefficients used for computing
running averages of gradient and its square (default: (0.95, 0))
eps (float, optional): term added to the denominator to improve
numerical stability (default: 1e-8)
weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
grad_averaging: gradient averaging
amsgrad (boolean, optional): whether to use the AMSGrad variant of this
algorithm from the paper `On the Convergence of Adam and Beyond`_
(default: False)
"""
def __init__(self, params, lr=1e-3, betas=(0.95, 0), eps=1e-8,
weight_decay=0, grad_averaging=False, amsgrad=False):
if not 0.0 <= lr:
raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 <= eps:
raise ValueError("Invalid epsilon value: {}".format(eps))
if not 0.0 <= betas[0] < 1.0:
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
if not 0.0 <= betas[1] < 1.0:
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
defaults = dict(lr=lr, betas=betas, eps=eps,
weight_decay=weight_decay,
grad_averaging=grad_averaging,
amsgrad=amsgrad)
super(Novograd, self).__init__(params, defaults)
def __setstate__(self, state):
super(Novograd, self).__setstate__(state)
for group in self.param_groups:
group.setdefault('amsgrad', False)
def step(self, closure=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
for p in group['params']:
if p.grad is None:
continue
grad = p.grad.data
if grad.is_sparse:
raise RuntimeError('Sparse gradients are not supported.')
amsgrad = group['amsgrad']
state = self.state[p]
# State initialization
if len(state) == 0:
state['step'] = 0
# Exponential moving average of gradient values
state['exp_avg'] = torch.zeros_like(p.data)
# Exponential moving average of squared gradient values
state['exp_avg_sq'] = torch.zeros([]).to(state['exp_avg'].device)
if amsgrad:
# Maintains max of all exp. moving avg. of sq. grad. values
state['max_exp_avg_sq'] = torch.zeros([]).to(state['exp_avg'].device)
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
if amsgrad:
max_exp_avg_sq = state['max_exp_avg_sq']
beta1, beta2 = group['betas']
state['step'] += 1
norm = torch.sum(torch.pow(grad, 2))
if exp_avg_sq == 0:
exp_avg_sq.copy_(norm)
else:
exp_avg_sq.mul_(beta2).add_(norm, alpha=1 - beta2)
if amsgrad:
# Maintains the maximum of all 2nd moment running avg. till now
torch.max(max_exp_avg_sq, exp_avg_sq, out=max_exp_avg_sq)
# Use the max. for normalizing running avg. of gradient
denom = max_exp_avg_sq.sqrt().add_(group['eps'])
else:
denom = exp_avg_sq.sqrt().add_(group['eps'])
grad.div_(denom)
if group['weight_decay'] != 0:
grad.add_(p.data, alpha=group['weight_decay'])
if group['grad_averaging']:
grad.mul_(1 - beta1)
exp_avg.mul_(beta1).add_(grad)
p.data.add_(exp_avg, alpha=-group['lr'])
return loss
class TestFusedNovoGrad(TestFusedOptimizer):
def __init__(self, *args, **kwargs):
super(TestFusedNovoGrad, self).__init__(*args, **kwargs)
# The options for NovoGrad and FusedNovoGrad are very specific if they
# are expected to behave the same.
self.options = {'lr':1e-3, 'betas':(0.95, 0), 'eps':1e-8,
'weight_decay':0, 'grad_averaging':False, 'amsgrad':False}
self.tst_options = {'lr':1e-3, 'betas':(0.95, 0), 'eps':1e-8,
'weight_decay':0, 'grad_averaging':False, 'amsgrad':False,
'bias_correction':False, 'reg_inside_moment':True,
'norm_type':2, 'init_zero':False, 'set_grad_none':True}
self.ref_optim = Novograd
self.fused_optim = apex.optimizers.FusedNovoGrad
def test_float(self):
self.gen_single_type_test(param_type=torch.float)
def test_half(self):
self.gen_single_type_test(param_type=torch.float16)
@unittest.skipIf(torch.cuda.device_count()<2, "more than 1 GPU required")
def test_multi_device(self):
devices = ("cuda:1", "cuda:0")
for current_dev, tensor_dev in product(devices, devices):
with torch.cuda.device(current_dev):
torch.cuda.synchronize()
self.gen_single_type_test(param_type=torch.float, device=tensor_dev)
def test_multi_params(self):
sizes = [[4096, 1024], [4096], [4096, 2048], [32320, 1024], [1]]
tensors = []
for size in sizes:
tensors.append(torch.rand(size, dtype=torch.float, device="cuda"))
ref_param, tst_param, ref_optim, tst_optim = self.gen_param_optim(
tensors, self.options, self.tst_options
)
for _ in range(self.iters):
self.gen_grad(ref_param, tst_param)
ref_optim.step()
tst_optim.step()
max_abs_diff, max_rel_diff = self.get_max_diff(ref_param, tst_param)
self.assertLessEqual(max_abs_diff, self.max_abs_diff)
self.assertLessEqual(max_rel_diff, self.max_rel_diff)
if __name__ == '__main__':
unittest.main()
......@@ -2,9 +2,11 @@ import unittest
import os
import random
import math
import torch
import apex
from itertools import product
from torch.optim import Optimizer
class TestFusedOptimizer(unittest.TestCase):
def setUp(self, max_abs_diff=1e-3, max_rel_diff=1, iters=7):
......@@ -16,7 +18,14 @@ class TestFusedOptimizer(unittest.TestCase):
def tearDown(self):
pass
def gen_param_optim(self, tensors, options):
def gen_param_optim(self, tensors, options, tst_options=None):
# Adding this to make backward compatible with existing tests. Just in
# case "tst_options" are not provided, it gets a copy of options
# which contains the parameters for the reference optimizer
if tst_options == None:
tst_options = options
ref_param = []
tst_param = []
for tensor in tensors:
......@@ -24,7 +33,7 @@ class TestFusedOptimizer(unittest.TestCase):
tst_param.append(torch.nn.Parameter(tensor.clone()))
ref_optim = self.ref_optim(ref_param, **options)
tst_optim = self.fused_optim(tst_param, **options)
tst_optim = self.fused_optim(tst_param, **tst_options)
return (ref_param, tst_param, ref_optim, tst_optim)
......@@ -54,9 +63,18 @@ class TestFusedOptimizer(unittest.TestCase):
def gen_single_type_test(self, param_type=torch.float, device='cuda'):
nelem = 278011
# Some ref and test optimizers may require different set of options.
# This is a quick workaround to add that functionality while making
# minimum changes in existing code.
# If there is no "tst_options" field provided, safe to initialize
# the test optimizer with the parameters of reference optimizer.
if not hasattr(self, 'tst_options'):
self.tst_options = self.options
tensor = torch.rand(nelem, dtype=param_type, device=device)
ref_param, tst_param, ref_optim, tst_optim = \
self.gen_param_optim([tensor], self.options)
self.gen_param_optim([tensor], self.options, self.tst_options)
for i in range(self.iters):
self.gen_grad(ref_param, tst_param)
......@@ -89,7 +107,6 @@ class TestFusedAdam(TestFusedOptimizer):
with torch.cuda.device(current_dev):
self.gen_single_type_test(param_type=torch.float, device=tensor_dev)
@unittest.skip('Disable until 8/1/2019 adam/adamw upstream picked')
def test_multi_params(self):
sizes = [[4096, 1024], [4096], [4096, 2048], [32320, 1024], [1]]
......@@ -263,8 +280,5 @@ class TestFusedSGD(TestFusedOptimizer):
with torch.cuda.device(current_dev):
self.gen_single_type_test(param_type=torch.float, device=tensor_dev)
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment