ifcustom_layer_dict:# Update default list to include user supplied custom (layer type : parameter tensor), make sure this tensor type is something ASP knows how to prune
sparse_parameter_list.update(custom_layer_dict)
whitelist+=list(custom_layer_dict.keys())
formodule_typeinwhitelist:
assert(module_typeinsparse_parameter_list),"Module %s :: Don't know how to sparsify module."%module.dtype()
...
...
@@ -97,7 +103,7 @@ class ASP:
ifp.dtype==torch.float16and((p.size()[0]%8)!=0or(p.size()[1]%16)!=0):#For Conv2d dim= K x CRS; we prune along C
print("[ASP] Auto skipping pruning %s::%s of size=%s and type=%s for sparsity"%(module_name,p_name,str(p.size()),str(p.dtype)))
continue
ifcls.__verbosity>=3:
print("[ASP] Sparsifying %s::%s of size=%s and type=%s for sparsity"%(module_name,p_name,str(p.size()),str(p.dtype)))