Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
apex
Commits
37a1c121
Commit
37a1c121
authored
Aug 12, 2019
by
Deyu Fu
Browse files
add multi-precision support for novograd, clean import
parent
8599b854
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
68 additions
and
33 deletions
+68
-33
apex/optimizers/novograd.py
apex/optimizers/novograd.py
+66
-29
apex/optimizers/sgd.py
apex/optimizers/sgd.py
+2
-4
No files found.
apex/optimizers/novograd.py
View file @
37a1c121
import
torch
from
apex.multi_tensor_apply
import
multi_tensor_applier
from
amp_C
import
multi_tensor_novograd
class
NovoGrad
(
torch
.
optim
.
Optimizer
):
...
...
@@ -54,8 +53,15 @@ class NovoGrad(torch.optim.Optimizer):
grad_averaging
=
grad_averaging
,
norm_type
=
norm_type
,
init_zero
=
init_zero
)
super
(
NovoGrad
,
self
).
__init__
(
params
,
defaults
)
if
multi_tensor_applier
.
available
:
import
amp_C
# Skip buffer
self
.
_dummy_overflow_buf
=
torch
.
cuda
.
IntTensor
([
0
])
self
.
multi_tensor_novograd
=
amp_C
.
multi_tensor_novograd
else
:
raise
RuntimeError
(
'apex.optimizers.NovoGrad requires cuda extensions'
)
self
.
moment_mode
=
0
if
reg_inside_moment
else
1
self
.
dummy_overflow_buf
=
torch
.
cuda
.
IntTensor
([
0
])
self
.
set_grad_none
=
set_grad_none
def
zero_grad
(
self
):
...
...
@@ -90,7 +96,8 @@ class NovoGrad(torch.optim.Optimizer):
group
[
'step'
]
=
1
# create lists for multi-tensor apply
p_list
,
g_list
,
m1_list
=
[],
[],
[]
g_16
,
p_16
,
m_16
=
[],
[],
[]
g_32
,
p_32
,
m_32
=
[],
[],
[]
for
p
in
group
[
'params'
]:
if
p
.
grad
is
None
:
...
...
@@ -104,39 +111,69 @@ class NovoGrad(torch.optim.Optimizer):
# Exponential moving average of gradient values
state
[
'exp_avg'
]
=
torch
.
zeros_like
(
p
.
data
)
p_list
.
append
(
p
.
data
)
g_list
.
append
(
p
.
grad
.
data
)
m1_list
.
append
(
state
[
'exp_avg'
])
# we will store per weight norm as one tensor for a group
# different rom optim.Adam, we store norm here(not ^2) so we can unify 2 norm type
if
p
.
dtype
==
torch
.
float16
:
g_16
.
append
(
p
.
grad
.
data
)
p_16
.
append
(
p
.
data
)
m_16
.
append
(
state
[
'exp_avg'
])
elif
p
.
dtype
==
torch
.
float32
:
g_32
.
append
(
p
.
grad
.
data
)
p_32
.
append
(
p
.
data
)
m_32
.
append
(
state
[
'exp_avg'
])
else
:
raise
RuntimeError
(
'NovoGrad only support fp16 and fp32.'
)
# we store per weight norm as one tensor for one group/precision combination
# different from optim.Adam, we store norm here(not ^2) so we can unify calculation for norm types
if
'exp_avg_sq'
not
in
group
:
group
[
'exp_avg_sq'
]
=
[
None
,
None
]
if
group
[
'init_zero'
]:
group
[
'exp_avg_sq'
]
=
torch
.
cuda
.
FloatTensor
(
len
(
g_list
)).
contiguous
().
fill_
(
0
)
group
[
'exp_avg_sq'
][
0
]
=
torch
.
cuda
.
FloatTensor
(
len
(
g_16
)).
contiguous
().
fill_
(
0
)
group
[
'exp_avg_sq'
][
1
]
=
torch
.
cuda
.
FloatTensor
(
len
(
g_32
)).
contiguous
().
fill_
(
0
)
else
:
# init with first step norm, so first blend have no effect
if
group
[
'norm_type'
]
==
0
:
m2
=
[
torch
.
max
(
torch
.
abs
(
g
)).
item
()
for
g
in
g_list
]
v_16
=
[
torch
.
max
(
torch
.
abs
(
g
)).
item
()
for
g
in
g_16
]
v_32
=
[
torch
.
max
(
torch
.
abs
(
g
)).
item
()
for
g
in
g_32
]
elif
group
[
'norm_type'
]
==
2
:
m2
=
[
torch
.
sum
(
torch
.
pow
(
g
,
2
)).
sqrt
().
item
()
for
g
in
g_list
]
v_16
=
[
torch
.
sum
(
torch
.
pow
(
g
,
2
)).
sqrt
().
item
()
for
g
in
g_16
]
v_32
=
[
torch
.
sum
(
torch
.
pow
(
g
,
2
)).
sqrt
().
item
()
for
g
in
g_32
]
else
:
raise
RuntimeError
(
'NovoGrad only support l2/inf norm now.'
)
group
[
'exp_avg_sq'
]
=
torch
.
cuda
.
FloatTensor
(
m2
)
group
[
'exp_avg_sq'
][
0
]
=
torch
.
cuda
.
FloatTensor
(
v_16
)
group
[
'exp_avg_sq'
][
1
]
=
torch
.
cuda
.
FloatTensor
(
v_32
)
else
:
assert
(
len
(
g_list
)
==
group
[
'exp_avg_sq'
].
numel
())
multi_tensor_applier
(
multi_tensor_novograd
,
self
.
dummy_overflow_buf
,
[
g_list
,
p_list
,
m1_list
],
group
[
'exp_avg_sq'
],
group
[
'lr'
],
beta1
,
beta2
,
group
[
'eps'
],
group
[
'step'
],
bias_correction
,
group
[
'weight_decay'
],
grad_averaging
,
self
.
moment_mode
,
group
[
'norm_type'
])
assert
(
len
(
g_16
)
==
group
[
'exp_avg_sq'
][
0
].
numel
())
assert
(
len
(
g_32
)
==
group
[
'exp_avg_sq'
][
1
].
numel
())
if
(
len
(
g_16
)
>
0
):
multi_tensor_applier
(
self
.
multi_tensor_novograd
,
self
.
_dummy_overflow_buf
,
[
g_16
,
p_16
,
m_16
],
group
[
'exp_avg_sq'
][
0
],
group
[
'lr'
],
beta1
,
beta2
,
group
[
'eps'
],
group
[
'step'
],
bias_correction
,
group
[
'weight_decay'
],
grad_averaging
,
self
.
moment_mode
,
group
[
'norm_type'
])
if
(
len
(
g_32
)
>
0
):
multi_tensor_applier
(
self
.
multi_tensor_novograd
,
self
.
_dummy_overflow_buf
,
[
g_32
,
p_32
,
m_32
],
group
[
'exp_avg_sq'
][
1
],
group
[
'lr'
],
beta1
,
beta2
,
group
[
'eps'
],
group
[
'step'
],
bias_correction
,
group
[
'weight_decay'
],
grad_averaging
,
self
.
moment_mode
,
group
[
'norm_type'
])
return
loss
apex/optimizers/sgd.py
View file @
37a1c121
import
torch
from
torch.optim
import
Optimizer
from
apex.multi_tensor_apply
import
multi_tensor_applier
class
SGD
(
Optimizer
):
class
SGD
(
torch
.
optim
.
Optimizer
):
r
"""Implements stochastic gradient descent (optionally with momentum).
Nesterov momentum is based on the formula from
`On the importance of initialization and momentum in deep learning`__.
...
...
@@ -62,7 +60,7 @@ class SGD(Optimizer):
self
.
multi_tensor_axpby
=
amp_C
.
multi_tensor_axpby
self
.
multi_tensor_sgd
=
amp_C
.
multi_tensor_sgd
else
:
raise
RuntimeError
(
'apex.optimizers.
Fused
SGD requires cuda extensions'
)
raise
RuntimeError
(
'apex.optimizers.SGD requires cuda extensions'
)
if
nesterov
and
(
momentum
<=
0
or
dampening
!=
0
):
raise
ValueError
(
"Nesterov momentum requires a momentum and zero dampening"
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment