Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
apex
Commits
16869317
Commit
16869317
authored
Jun 10, 2020
by
Sukru Eryilmaz
Browse files
add streaming suppport for softmax kernels
parent
3e474e85
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
206 additions
and
1 deletion
+206
-1
apex/contrib/csrc/multihead_attn/softmax.h
apex/contrib/csrc/multihead_attn/softmax.h
+206
-1
No files found.
apex/contrib/csrc/multihead_attn/softmax.h
View file @
16869317
...
@@ -471,6 +471,38 @@ bool dispatch_additive_masked_softmax(output_t *dst, const input_t *src, const i
...
@@ -471,6 +471,38 @@ bool dispatch_additive_masked_softmax(output_t *dst, const input_t *src, const i
return
false
;
return
false
;
}
}
template
<
typename
input_t
,
typename
output_t
,
typename
acc_t
>
bool
dispatch_additive_masked_softmax_stream
(
output_t
*
dst
,
const
input_t
*
src
,
const
input_t
*
pad_mask
,
int
softmax_elements
,
int
softmax_elements_stride
,
int
batch_count
,
int
pad_batch_stride
,
cudaStream_t
streamid
)
{
if
(
softmax_elements
==
0
)
{
return
true
;
}
else
if
(
softmax_elements
<=
1024
)
{
// compute function index. there's a function for each power of two size up to 1024.
int
log2_elements
=
0
;
while
((
1
<<
log2_elements
)
<
softmax_elements
)
++
log2_elements
;
additive_masked_softmax_forward_func
<
input_t
,
output_t
>
kernel
;
int
warp_size
,
batches_per_warp
;
if
(
!
warp_additive_masked_softmax_kernel
<
input_t
,
output_t
,
acc_t
>
(
log2_elements
,
warp_size
,
batches_per_warp
,
kernel
))
{
return
false
;
}
// use 128 threads per block to maximimize gpu utilization
constexpr
int
threads_per_block
=
128
;
// compute warps per block.
int
warps_per_block
=
(
threads_per_block
/
warp_size
);
// compute launch size
int
batches_per_block
=
warps_per_block
*
batches_per_warp
;
int
blocks
=
(
batch_count
+
batches_per_block
-
1
)
/
batches_per_block
;
dim3
threads
(
warp_size
,
warps_per_block
,
1
);
// launch
kernel
<<<
blocks
,
threads
,
streamid
>>>
(
dst
,
src
,
pad_mask
,
batch_count
,
softmax_elements_stride
,
softmax_elements
,
pad_batch_stride
);
return
true
;
}
return
false
;
}
// WARP_BATCH number of batches.
// WARP_BATCH number of batches.
// WARP_ITERATOINS The number of iterations required for one warp to iterate over all data.
// WARP_ITERATOINS The number of iterations required for one warp to iterate over all data.
// WARP_SIZE number of elements working on a single batch, has to be a power of two.
// WARP_SIZE number of elements working on a single batch, has to be a power of two.
...
@@ -1110,7 +1142,80 @@ void dispatch_masked_scale_softmax_backward_masked_out(output_t *grad_input, con
...
@@ -1110,7 +1142,80 @@ void dispatch_masked_scale_softmax_backward_masked_out(output_t *grad_input, con
}
}
}
}
}
}
template
<
typename
input_t
,
typename
output_t
,
typename
acc_t
,
bool
is_log_softmax
>
void
dispatch_masked_scale_softmax_backward_masked_out_stream
(
output_t
*
grad_input
,
const
input_t
*
grad
,
const
input_t
*
output
,
const
uint8_t
*
mask
,
const
uint8_t
*
pad_mask
,
acc_t
scale
,
int
softmax_elements
,
int
softmax_elements_stride
,
int
batch_count
,
int
heads
,
cudaStream_t
streamid
)
{
TORCH_INTERNAL_ASSERT
(
softmax_elements
>=
0
&&
softmax_elements
<=
1024
);
if
(
softmax_elements
==
0
)
{
return
;
}
else
{
int
log2_elements
=
log2_ceil_native
(
softmax_elements
);
const
int
next_power_of_two
=
1
<<
log2_elements
;
// This value must match the WARP_SIZE constexpr value computed inside softmax_warp_backward.
int
warp_size
=
(
next_power_of_two
<
C10_WARP_SIZE
)
?
next_power_of_two
:
C10_WARP_SIZE
;
// This value must match the WARP_BATCH constexpr value computed inside softmax_warp_backward.
int
batches_per_warp
=
(
next_power_of_two
<=
128
)
?
2
:
1
;
// use 128 threads per block to maximimize gpu utilization
constexpr
int
threads_per_block
=
128
;
int
warps_per_block
=
(
threads_per_block
/
warp_size
);
int
batches_per_block
=
warps_per_block
*
batches_per_warp
;
int
blocks
=
(
batch_count
+
batches_per_block
-
1
)
/
batches_per_block
;
dim3
threads
(
warp_size
,
warps_per_block
,
1
);
// Launch code would be more elegant if C++ supported FOR CONSTEXPR
switch
(
log2_elements
)
{
case
0
:
// 1
masked_scale_softmax_warp_backward_masked_dgrad
<
input_t
,
output_t
,
acc_t
,
0
,
is_log_softmax
>
<<<
blocks
,
threads
,
0
,
streamid
>>>
(
grad_input
,
grad
,
output
,
mask
,
pad_mask
,
scale
,
batch_count
,
softmax_elements_stride
,
softmax_elements
,
heads
);
break
;
case
1
:
// 2
masked_scale_softmax_warp_backward_masked_dgrad
<
input_t
,
output_t
,
acc_t
,
1
,
is_log_softmax
>
<<<
blocks
,
threads
,
0
,
streamid
>>>
(
grad_input
,
grad
,
output
,
mask
,
pad_mask
,
scale
,
batch_count
,
softmax_elements_stride
,
softmax_elements
,
heads
);
break
;
case
2
:
// 4
masked_scale_softmax_warp_backward_masked_dgrad
<
input_t
,
output_t
,
acc_t
,
2
,
is_log_softmax
>
<<<
blocks
,
threads
,
0
,
streamid
>>>
(
grad_input
,
grad
,
output
,
mask
,
pad_mask
,
scale
,
batch_count
,
softmax_elements_stride
,
softmax_elements
,
heads
);
break
;
case
3
:
// 8
masked_scale_softmax_warp_backward_masked_dgrad
<
input_t
,
output_t
,
acc_t
,
3
,
is_log_softmax
>
<<<
blocks
,
threads
,
0
,
streamid
>>>
(
grad_input
,
grad
,
output
,
mask
,
pad_mask
,
scale
,
batch_count
,
softmax_elements_stride
,
softmax_elements
,
heads
);
break
;
case
4
:
// 16
masked_scale_softmax_warp_backward_masked_dgrad
<
input_t
,
output_t
,
acc_t
,
4
,
is_log_softmax
>
<<<
blocks
,
threads
,
0
,
streamid
>>>
(
grad_input
,
grad
,
output
,
mask
,
pad_mask
,
scale
,
batch_count
,
softmax_elements_stride
,
softmax_elements
,
heads
);
break
;
case
5
:
// 32
masked_scale_softmax_warp_backward_masked_dgrad
<
input_t
,
output_t
,
acc_t
,
5
,
is_log_softmax
>
<<<
blocks
,
threads
,
0
,
streamid
>>>
(
grad_input
,
grad
,
output
,
mask
,
pad_mask
,
scale
,
batch_count
,
softmax_elements_stride
,
softmax_elements
,
heads
);
break
;
case
6
:
// 64
masked_scale_softmax_warp_backward_masked_dgrad
<
input_t
,
output_t
,
acc_t
,
6
,
is_log_softmax
>
<<<
blocks
,
threads
,
0
,
streamid
>>>
(
grad_input
,
grad
,
output
,
mask
,
pad_mask
,
scale
,
batch_count
,
softmax_elements_stride
,
softmax_elements
,
heads
);
break
;
case
7
:
// 128
masked_scale_softmax_warp_backward_masked_dgrad
<
input_t
,
output_t
,
acc_t
,
7
,
is_log_softmax
>
<<<
blocks
,
threads
,
0
,
streamid
>>>
(
grad_input
,
grad
,
output
,
mask
,
pad_mask
,
scale
,
batch_count
,
softmax_elements_stride
,
softmax_elements
,
heads
);
break
;
case
8
:
// 256
masked_scale_softmax_warp_backward_masked_dgrad
<
input_t
,
output_t
,
acc_t
,
8
,
is_log_softmax
>
<<<
blocks
,
threads
,
0
,
streamid
>>>
(
grad_input
,
grad
,
output
,
mask
,
pad_mask
,
scale
,
batch_count
,
softmax_elements_stride
,
softmax_elements
,
heads
);
break
;
case
9
:
// 512
masked_scale_softmax_warp_backward_masked_dgrad
<
input_t
,
output_t
,
acc_t
,
9
,
is_log_softmax
>
<<<
blocks
,
threads
,
0
,
streamid
>>>
(
grad_input
,
grad
,
output
,
mask
,
pad_mask
,
scale
,
batch_count
,
softmax_elements_stride
,
softmax_elements
,
heads
);
break
;
case
10
:
// 1024
masked_scale_softmax_warp_backward_masked_dgrad
<
input_t
,
output_t
,
acc_t
,
10
,
is_log_softmax
>
<<<
blocks
,
threads
,
0
,
streamid
>>>
(
grad_input
,
grad
,
output
,
mask
,
pad_mask
,
scale
,
batch_count
,
softmax_elements_stride
,
softmax_elements
,
heads
);
break
;
default:
break
;
}
}
}
template
<
typename
input_t
,
typename
output_t
,
typename
acc_t
,
int
log2_elements
,
bool
is_log_softmax
>
template
<
typename
input_t
,
typename
output_t
,
typename
acc_t
,
int
log2_elements
,
bool
is_log_softmax
>
__global__
void
masked_scale_softmax_warp_backward
(
output_t
*
gradInput
,
const
input_t
*
grad
,
const
input_t
*
output
,
const
uint8_t
*
mask
,
acc_t
scale
,
int
batch_size
,
int
stride
,
int
element_count
)
__global__
void
masked_scale_softmax_warp_backward
(
output_t
*
gradInput
,
const
input_t
*
grad
,
const
input_t
*
output
,
const
uint8_t
*
mask
,
acc_t
scale
,
int
batch_size
,
int
stride
,
int
element_count
)
{
{
...
@@ -1266,6 +1371,77 @@ void dispatch_masked_scale_softmax_backward(output_t *grad_input, const input_t
...
@@ -1266,6 +1371,77 @@ void dispatch_masked_scale_softmax_backward(output_t *grad_input, const input_t
}
}
}
}
template
<
typename
input_t
,
typename
output_t
,
typename
acc_t
,
bool
is_log_softmax
>
void
dispatch_masked_scale_softmax_backward_stream
(
output_t
*
grad_input
,
const
input_t
*
grad
,
const
input_t
*
output
,
const
uint8_t
*
mask
,
acc_t
scale
,
int
softmax_elements
,
int
softmax_elements_stride
,
int
batch_count
,
cudaStream_t
streamid
)
{
TORCH_INTERNAL_ASSERT
(
softmax_elements
>=
0
&&
softmax_elements
<=
1024
);
if
(
softmax_elements
==
0
)
{
return
;
}
else
{
int
log2_elements
=
log2_ceil_native
(
softmax_elements
);
const
int
next_power_of_two
=
1
<<
log2_elements
;
// This value must match the WARP_SIZE constexpr value computed inside softmax_warp_backward.
int
warp_size
=
(
next_power_of_two
<
C10_WARP_SIZE
)
?
next_power_of_two
:
C10_WARP_SIZE
;
// This value must match the WARP_BATCH constexpr value computed inside softmax_warp_backward.
int
batches_per_warp
=
(
next_power_of_two
<=
128
)
?
2
:
1
;
// use 128 threads per block to maximimize gpu utilization
constexpr
int
threads_per_block
=
128
;
int
warps_per_block
=
(
threads_per_block
/
warp_size
);
int
batches_per_block
=
warps_per_block
*
batches_per_warp
;
int
blocks
=
(
batch_count
+
batches_per_block
-
1
)
/
batches_per_block
;
dim3
threads
(
warp_size
,
warps_per_block
,
1
);
// Launch code would be more elegant if C++ supported FOR CONSTEXPR
switch
(
log2_elements
)
{
case
0
:
// 1
masked_scale_softmax_warp_backward
<
input_t
,
output_t
,
acc_t
,
0
,
is_log_softmax
>
<<<
blocks
,
threads
,
0
,
streamid
>>>
(
grad_input
,
grad
,
output
,
mask
,
scale
,
batch_count
,
softmax_elements_stride
,
softmax_elements
);
break
;
case
1
:
// 2
masked_scale_softmax_warp_backward
<
input_t
,
output_t
,
acc_t
,
1
,
is_log_softmax
>
<<<
blocks
,
threads
,
0
,
streamid
>>>
(
grad_input
,
grad
,
output
,
mask
,
scale
,
batch_count
,
softmax_elements_stride
,
softmax_elements
);
break
;
case
2
:
// 4
masked_scale_softmax_warp_backward
<
input_t
,
output_t
,
acc_t
,
2
,
is_log_softmax
>
<<<
blocks
,
threads
,
0
,
streamid
>>>
(
grad_input
,
grad
,
output
,
mask
,
scale
,
batch_count
,
softmax_elements_stride
,
softmax_elements
);
break
;
case
3
:
// 8
masked_scale_softmax_warp_backward
<
input_t
,
output_t
,
acc_t
,
3
,
is_log_softmax
>
<<<
blocks
,
threads
,
0
,
streamid
>>>
(
grad_input
,
grad
,
output
,
mask
,
scale
,
batch_count
,
softmax_elements_stride
,
softmax_elements
);
break
;
case
4
:
// 16
masked_scale_softmax_warp_backward
<
input_t
,
output_t
,
acc_t
,
4
,
is_log_softmax
>
<<<
blocks
,
threads
,
0
,
streamid
>>>
(
grad_input
,
grad
,
output
,
mask
,
scale
,
batch_count
,
softmax_elements_stride
,
softmax_elements
);
break
;
case
5
:
// 32
masked_scale_softmax_warp_backward
<
input_t
,
output_t
,
acc_t
,
5
,
is_log_softmax
>
<<<
blocks
,
threads
,
0
,
streamid
>>>
(
grad_input
,
grad
,
output
,
mask
,
scale
,
batch_count
,
softmax_elements_stride
,
softmax_elements
);
break
;
case
6
:
// 64
masked_scale_softmax_warp_backward
<
input_t
,
output_t
,
acc_t
,
6
,
is_log_softmax
>
<<<
blocks
,
threads
,
0
,
streamid
>>>
(
grad_input
,
grad
,
output
,
mask
,
scale
,
batch_count
,
softmax_elements_stride
,
softmax_elements
);
break
;
case
7
:
// 128
masked_scale_softmax_warp_backward
<
input_t
,
output_t
,
acc_t
,
7
,
is_log_softmax
>
<<<
blocks
,
threads
,
0
,
streamid
>>>
(
grad_input
,
grad
,
output
,
mask
,
scale
,
batch_count
,
softmax_elements_stride
,
softmax_elements
);
break
;
case
8
:
// 256
masked_scale_softmax_warp_backward
<
input_t
,
output_t
,
acc_t
,
8
,
is_log_softmax
>
<<<
blocks
,
threads
,
0
,
streamid
>>>
(
grad_input
,
grad
,
output
,
mask
,
scale
,
batch_count
,
softmax_elements_stride
,
softmax_elements
);
break
;
case
9
:
// 512
masked_scale_softmax_warp_backward
<
input_t
,
output_t
,
acc_t
,
9
,
is_log_softmax
>
<<<
blocks
,
threads
,
0
,
streamid
>>>
(
grad_input
,
grad
,
output
,
mask
,
scale
,
batch_count
,
softmax_elements_stride
,
softmax_elements
);
break
;
case
10
:
// 1024
masked_scale_softmax_warp_backward
<
input_t
,
output_t
,
acc_t
,
10
,
is_log_softmax
>
<<<
blocks
,
threads
,
0
,
streamid
>>>
(
grad_input
,
grad
,
output
,
mask
,
scale
,
batch_count
,
softmax_elements_stride
,
softmax_elements
);
break
;
default:
break
;
}
}
}
// elementwise multiplication called in at::softmax_backward_data is fused inside softmax dgrad kernel
// elementwise multiplication called in at::softmax_backward_data is fused inside softmax dgrad kernel
// as a result of fusion, intermediate multiplication result is stored in fp32 in registers, instead of fp16
// as a result of fusion, intermediate multiplication result is stored in fp32 in registers, instead of fp16
template
<
typename
input_t
,
typename
output_t
,
typename
acc_t
,
int
log2_elements
,
bool
is_log_softmax
>
template
<
typename
input_t
,
typename
output_t
,
typename
acc_t
,
int
log2_elements
,
bool
is_log_softmax
>
...
@@ -1608,6 +1784,35 @@ bool dispatch_softmax_backward(output_t *grad_input, const input_t *grad, const
...
@@ -1608,6 +1784,35 @@ bool dispatch_softmax_backward(output_t *grad_input, const input_t *grad, const
return
false
;
return
false
;
}
}
template
<
typename
input_t
,
typename
output_t
,
typename
acc_t
>
bool
dispatch_softmax_backward_stream
(
output_t
*
grad_input
,
const
input_t
*
grad
,
const
input_t
*
output
,
int
softmax_elements
,
int
softmax_elements_stride
,
int
batch_count
,
cudaStream_t
streamid
)
{
if
(
softmax_elements
==
0
)
{
return
true
;
}
else
if
(
softmax_elements
<=
1024
)
{
// compute function index. there's a function for each power of two size up to 1024.
int
log2_elements
=
0
;
while
((
1
<<
log2_elements
)
<
softmax_elements
)
++
log2_elements
;
softmax_backward_func
<
input_t
,
output_t
>
kernel
;
int
warp_size
,
batches_per_warp
;
if
(
!
warp_softmax_backward_kernel
<
input_t
,
output_t
,
acc_t
>
(
log2_elements
,
warp_size
,
batches_per_warp
,
kernel
))
{
return
false
;
}
// use 128 threads per block to maximimize gpu utilization
constexpr
int
threads_per_block
=
128
;
// compute warps per block.
int
warps_per_block
=
(
threads_per_block
/
warp_size
);
// compute launch size
int
batches_per_block
=
warps_per_block
*
batches_per_warp
;
int
blocks
=
(
batch_count
+
batches_per_block
-
1
)
/
batches_per_block
;
dim3
threads
(
warp_size
,
warps_per_block
,
1
);
// launch
kernel
<<<
blocks
,
threads
,
0
,
streamid
>>>
(
grad_input
,
grad
,
output
,
batch_count
,
softmax_elements_stride
,
softmax_elements
);
return
true
;
}
return
false
;
}
template
<
typename
input_t
,
typename
output_t
,
typename
acc_t
,
int
WARP_BATCH
,
int
WARP_ITERATIONS
,
int
WARP_SIZE
=
32
,
int
ELEMENTS_PER_LDG_STG
=
1
>
template
<
typename
input_t
,
typename
output_t
,
typename
acc_t
,
int
WARP_BATCH
,
int
WARP_ITERATIONS
,
int
WARP_SIZE
=
32
,
int
ELEMENTS_PER_LDG_STG
=
1
>
__global__
void
masked_softmax_warp_backward
(
__half
*
gradInput
,
const
__half
*
grad
,
const
__half
*
output
,
const
uint8_t
*
pad_mask
,
int
batch_size
,
int
stride
,
int
element_count
,
int
pad_batch_stride
)
__global__
void
masked_softmax_warp_backward
(
__half
*
gradInput
,
const
__half
*
grad
,
const
__half
*
output
,
const
uint8_t
*
pad_mask
,
int
batch_size
,
int
stride
,
int
element_count
,
int
pad_batch_stride
)
{
{
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment