Commit 0b74bfd9 authored by ptrblck's avatar ptrblck Committed by mcarilli
Browse files

Disable tests for mixed opt_levels, add bitwise accurate test of parameters (#520)

* increase atol for Half-Float comparison to 1.5e-4

* disable tests for different opt_levels

* reset atol

* add bitwise accurate comparison
parent 03421e87
......@@ -57,18 +57,18 @@ class TestCheckpointing(unittest.TestCase):
optimizer.step()
return output
def compare_models(self, modelA, modelB):
def compare_models(self, modelA, modelB, test_setup=''):
state_dictA = modelA.state_dict()
state_dictB = modelB.state_dict()
self.assertEqual(len(state_dictA), len(state_dictB),
'state_dicts have different lengths')
'state_dicts have different lengths' + test_setup)
for key in state_dictA:
paramA = state_dictA[key]
paramB = state_dictB[key]
self.assertTrue(torch.allclose(paramA.float(), paramB.float(), rtol=0, atol=1e-4),
msg='Parameters in state_dicts not equal.' +
'key: {}\nparam: {}\nrestored: {}\ndiff: {}'.format(
key, paramA, paramB, paramA - paramB))
self.assertTrue((paramA==paramB).all(),
msg='Parameters in state_dices not equal.' +
'key: {}\nparam: {}\nrestored: {}\ndiff: {} for {}'.format(
key, paramA, paramB, paramA - paramB, test_setup))
def test_restoring(self):
nb_epochs = 10
......@@ -77,11 +77,11 @@ class TestCheckpointing(unittest.TestCase):
for res_opt_level in self.test_opt_levels:
for amp_before_load in [True, False]:
for num_losses in range(1, 3):
# print('#' * 75 + '\n' + \
# f'opt_level {opt_level}\n' + \
# f'restore_opt_level {res_opt_level}\n' + \
# f'amp_before_load {amp_before_load}\n' + \
# f'num_losses {num_losses}\n')
test_setup = ('#' * 75 + '\n' + \
f'opt_level {opt_level}\n' + \
f'restore_opt_level {res_opt_level}\n' + \
f'amp_before_load {amp_before_load}\n' + \
f'num_losses {num_losses}\n')
self.seed()
......@@ -154,47 +154,12 @@ class TestCheckpointing(unittest.TestCase):
range(num_losses, num_losses*2))
self.assertTrue(
torch.allclose(output.float(), restore_output.float()),
'Output of reference and restored models differ')
self.compare_models(model, restore_model)
'Output of reference and restored models differ for ' + test_setup)
self.compare_models(model, restore_model, test_setup)
# if opt_level != res_opt_level
else:
# Only check state_dict
checkpoint = {
'model': model.state_dict(),
'optimizer': optimizer.state_dict(),
'amp': amp.state_dict()
}
# Check state_dict for FP32 tensors
self.check_state_dict_fp32(checkpoint['model'])
# Restore model
restore_model = MyModel().to('cuda')
restore_optimizer = optim.SGD(
restore_model.parameters(),
lr=self.initial_lr)
if amp_before_load:
restore_model, restore_optimizer = amp.initialize(
restore_model,
restore_optimizer,
opt_level=res_opt_level,
num_losses=num_losses,
verbosity=0)
restore_model.load_state_dict(checkpoint['model'])
restore_optimizer.load_state_dict(checkpoint['optimizer'])
# FIXME: We cannot test the amp.state_dict in the same script
# amp.load_state_dict(checkpoint['amp'])
if not amp_before_load:
restore_model, restore_optimizer = amp.initialize(
restore_model,
restore_optimizer,
opt_level=res_opt_level,
num_losses=num_losses,
verbosity=0)
self.compare_models(model, restore_model)
# skip tests for different opt_levels
continue
def test_loss_scale_decrease(self):
num_losses = 3
......@@ -207,7 +172,7 @@ class TestCheckpointing(unittest.TestCase):
model = MyModel().to('cuda')
optimizer = optim.SGD(model.parameters(),
lr=1e-3)#self.initial_lr)
lr=self.initial_lr)
model, optimizer = amp.initialize(
model, optimizer, opt_level=opt_level, num_losses=num_losses,
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment