test_adam.py 6.31 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
import unittest
import os
import random

import torch
import apex

class TestFusedAdam(unittest.TestCase):
    def setUp(self, max_abs_diff=1e-3, max_rel_diff=1, iters=7):
        self.max_abs_diff = max_abs_diff
        self.max_rel_diff = max_rel_diff
        self.iters = iters
        torch.cuda.manual_seed(9876)

    def tearDown(self):
        pass

    def gen_param_optim(self, tensors, adam_option):
        ref_param = []
        tst_param = []
        for tensor in tensors:
            ref_param.append(torch.nn.Parameter(tensor.clone()))
            tst_param.append(torch.nn.Parameter(tensor.clone()))

        ref_optim = torch.optim.Adam(ref_param, **adam_option)
26
        tst_optim = apex.optimizers.FusedAdam(tst_param, **adam_option)
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

        return (ref_param, tst_param, ref_optim, tst_optim)

    def gen_grad(self, ref_param, tst_param):
        for p_ref, p_tst in zip(ref_param, tst_param):
            p_ref.grad = torch.rand_like(p_ref)
            p_tst.grad = p_ref.grad

    def gen_mixed_grad(self, ref_param, tst_param, scale=1.0):
        half_grads = []
        for p_ref, p_tst in zip(ref_param, tst_param):
            half_grads.append(torch.rand_like(p_ref).half())
            p_ref.grad = half_grads[-1].float() / scale
        return half_grads

    def get_max_diff(self, ref_param, tst_param):
        max_abs_diff = max_rel_diff = 0
        for p_ref, p_tst in zip(ref_param, tst_param):
            max_abs_diff_p = (p_ref - p_tst).abs().max().item()
            max_rel_diff_p = ((p_ref - p_tst) / p_ref).abs().max().item()

            if max_abs_diff_p > max_abs_diff:  max_abs_diff = max_abs_diff_p
            if max_rel_diff_p > max_rel_diff:  max_rel_diff = max_rel_diff_p

        return max_abs_diff, max_rel_diff

    def gen_single_type_test(self, param_type=torch.float):
        nelem = 278011
        adam_option = {'lr':5e-4, 'betas':(0.9, 0.999), 'eps':1e-08,
            'weight_decay':0, 'amsgrad':False}

        tensor = torch.rand(nelem, dtype=param_type, device='cuda')
        ref_param, tst_param, ref_optim, tst_optim = \
            self.gen_param_optim([tensor], adam_option)

        for i in range(self.iters):
            self.gen_grad(ref_param, tst_param)
            ref_optim.step()
            tst_optim.step()
            max_abs_diff, max_rel_diff = self.get_max_diff(ref_param, tst_param)

            self.assertLessEqual(max_abs_diff, self.max_abs_diff)
            self.assertLessEqual(max_rel_diff, self.max_rel_diff)

    def test_double(self):
        self.gen_single_type_test(param_type=torch.double)

    def test_float(self):
        self.gen_single_type_test(param_type=torch.float)

    def test_half(self):
        self.gen_single_type_test(param_type=torch.float16)

80
    @unittest.skip('Disable until 8/1/2019 adam/adamw upstream picked')
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
    def test_multi_params(self):
        sizes = [[4096, 1024], [4096], [4096, 2048], [32320, 1024], [1]]
        adam_option = {'lr':5e-4, 'betas':(0.9, 0.999), 'eps':1e-08,
            'weight_decay':0, 'amsgrad':False}

        tensors = []
        for size in sizes:
            tensors.append(torch.rand(size, dtype=torch.float, device='cuda'))
        ref_param, tst_param, ref_optim, tst_optim = \
            self.gen_param_optim(tensors, adam_option)

        for i in range(self.iters):
            self.gen_grad(ref_param, tst_param)
            ref_optim.step()
            tst_optim.step()
            max_abs_diff, max_rel_diff = self.get_max_diff(ref_param, tst_param)
            self.assertLessEqual(max_abs_diff, self.max_abs_diff)
            self.assertLessEqual(max_rel_diff, self.max_rel_diff)

    @unittest.skip('No longer support fuse scaling')
    def test_scale(self):
        nelem = 278011
        adam_option = {'lr':5e-4, 'betas':(0.9, 0.999), 'eps':1e-08,
            'weight_decay':0, 'amsgrad':False}

        tensor = torch.rand(nelem, dtype=torch.float, device='cuda')
        ref_param, tst_param, ref_optim, tst_optim = \
            self.gen_param_optim([tensor], adam_option)

        for i in range(self.iters):
            scale = random.random() * 1000
            half_grads = self.gen_mixed_grad(ref_param, tst_param, scale)
            ref_optim.step()
            tst_optim.step(grads=half_grads, scale=scale)
            max_abs_diff, max_rel_diff = self.get_max_diff(ref_param, tst_param)

            self.assertLessEqual(max_abs_diff, self.max_abs_diff)
            self.assertLessEqual(max_rel_diff, self.max_rel_diff)

    @unittest.skip('No longer support output fp16 param')
    def test_fp16_output(self):
        nelem = 278011
        adam_option = {'lr':5e-4, 'betas':(0.9, 0.999), 'eps':1e-08,
            'weight_decay':0, 'amsgrad':False}

        tensor = torch.rand(nelem, dtype=torch.float, device='cuda')
        ref_param, tst_param, ref_optim, tst_optim = \
            self.gen_param_optim([tensor], adam_option)

        fp16_param = torch.nn.Parameter(tensor.clone().half())

        for i in range(self.iters):
            half_grads = self.gen_mixed_grad(ref_param, tst_param)
            ref_optim.step()
            tst_optim.step(grads=half_grads, output_params=[fp16_param])

            max_abs_diff, max_rel_diff = self.get_max_diff(ref_param, tst_param)
            self.assertLessEqual(max_abs_diff, self.max_abs_diff)
            self.assertLessEqual(max_rel_diff, self.max_rel_diff)

            max_abs_diff, max_rel_diff = self.get_max_diff(tst_param, \
                [fp16_param.float()])
            self.assertLessEqual(max_abs_diff, self.max_abs_diff)
            self.assertLessEqual(max_rel_diff, self.max_rel_diff)

    def test_adam_option(self):
        nelem = 1
        adam_option = {'lr':0.01, 'betas':(0.6, 0.9), 'eps':3e-06,
            'weight_decay':0, 'amsgrad':False}

        tensor = torch.rand(nelem, dtype=torch.float, device='cuda')
        ref_param, tst_param, ref_optim, tst_optim = \
            self.gen_param_optim([tensor], adam_option)

        for i in range(self.iters):
            self.gen_grad(ref_param, tst_param)
            ref_optim.step()
            tst_optim.step()
            max_abs_diff, max_rel_diff = self.get_max_diff(ref_param, tst_param)

            self.assertLessEqual(max_abs_diff, self.max_abs_diff)
            self.assertLessEqual(max_rel_diff, self.max_rel_diff)


if __name__ == '__main__':
    script_path = os.path.dirname(os.path.realpath(__file__))
    unittest.main()