README_ORIGIN.md 6.58 KB
Newer Older
flyingdown's avatar
flyingdown committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
# Introduction

This repository holds NVIDIA-maintained utilities to streamline mixed precision and distributed training in Pytorch.
Some of the code here will be included in upstream Pytorch eventually.
The intent of Apex is to make up-to-date utilities available to users as quickly as possible.

## Full API Documentation: [https://nvidia.github.io/apex](https://nvidia.github.io/apex)

## [GTC 2019](https://github.com/mcarilli/mixed_precision_references/tree/master/GTC_2019) and [Pytorch DevCon 2019](https://github.com/mcarilli/mixed_precision_references/tree/master/Pytorch_Devcon_2019) Slides

# Contents

## 1. Amp:  Automatic Mixed Precision

`apex.amp` is a tool to enable mixed precision training by changing only 3 lines of your script.
Users can easily experiment with different pure and mixed precision training modes by supplying
different flags to `amp.initialize`.

[Webinar introducing Amp](https://info.nvidia.com/webinar-mixed-precision-with-pytorch-reg-page.html)
(The flag `cast_batchnorm` has been renamed to `keep_batchnorm_fp32`).

[API Documentation](https://nvidia.github.io/apex/amp.html)

[Comprehensive Imagenet example](https://github.com/NVIDIA/apex/tree/master/examples/imagenet)

[DCGAN example coming soon...](https://github.com/NVIDIA/apex/tree/master/examples/dcgan)

[Moving to the new Amp API](https://nvidia.github.io/apex/amp.html#transition-guide-for-old-api-users) (for users of the deprecated "Amp" and "FP16_Optimizer" APIs)

## 2. Distributed Training

`apex.parallel.DistributedDataParallel` is a module wrapper, similar to
`torch.nn.parallel.DistributedDataParallel`.  It enables convenient multiprocess distributed training,
optimized for NVIDIA's NCCL communication library.

[API Documentation](https://nvidia.github.io/apex/parallel.html)

[Python Source](https://github.com/NVIDIA/apex/tree/master/apex/parallel)

[Example/Walkthrough](https://github.com/NVIDIA/apex/tree/master/examples/simple/distributed)

The [Imagenet example](https://github.com/NVIDIA/apex/tree/master/examples/imagenet)
shows use of `apex.parallel.DistributedDataParallel` along with `apex.amp`.

### Synchronized Batch Normalization

`apex.parallel.SyncBatchNorm` extends `torch.nn.modules.batchnorm._BatchNorm` to
support synchronized BN.
It allreduces stats across processes during multiprocess (DistributedDataParallel) training.
Synchronous BN has been used in cases where only a small
local minibatch can fit on each GPU.
Allreduced stats increase the effective batch size for the BN layer to the
global batch size across all processes (which, technically, is the correct
formulation).
Synchronous BN has been observed to improve converged accuracy in some of our research models.

### Checkpointing

To properly save and load your `amp` training, we introduce the `amp.state_dict()`, which contains all `loss_scalers` and their corresponding unskipped steps,
as well as `amp.load_state_dict()` to restore these attributes.

In order to get bitwise accuracy, we recommend the following workflow:
```python
# Initialization
opt_level = 'O1'
model, optimizer = amp.initialize(model, optimizer, opt_level=opt_level)

# Train your model
...
with amp.scale_loss(loss, optimizer) as scaled_loss:
    scaled_loss.backward()
...

# Save checkpoint
checkpoint = {
    'model': model.state_dict(),
    'optimizer': optimizer.state_dict(),
    'amp': amp.state_dict()
}
torch.save(checkpoint, 'amp_checkpoint.pt')
...

# Restore
model = ...
optimizer = ...
checkpoint = torch.load('amp_checkpoint.pt')

model, optimizer = amp.initialize(model, optimizer, opt_level=opt_level)
model.load_state_dict(checkpoint['model'])
optimizer.load_state_dict(checkpoint['optimizer'])
amp.load_state_dict(checkpoint['amp'])

# Continue training
...
```

Note that we recommend restoring the model using the same `opt_level`. Also note that we recommend calling the `load_state_dict` methods after `amp.initialize`.

# Installation

## Containers
NVIDIA PyTorch Containers are available on NGC: https://catalog.ngc.nvidia.com/orgs/nvidia/containers/pytorch.
The containers come with all the custom extensions available at the moment. 

See [the NGC documentation](https://docs.nvidia.com/deeplearning/frameworks/pytorch-release-notes/index.html) for details such as:
- how to pull a container
- how to run a pulled container
- release notes

## From Source

To install Apex from source, we recommend using the nightly Pytorch obtainable from https://github.com/pytorch/pytorch.

The latest stable release obtainable from https://pytorch.org should also work.

### Rocm
Apex on ROCm supports both python only build and extension build.
Note: Pytorch version recommended is >=1.5 for extension build.

### To install using python only build use the following command in apex folder:
```
python setup.py install
```

### To install using extensions enabled use the following command in apex folder:
```
python setup.py install --cpp_ext --cuda_ext
```
Note that using --cuda_ext flag to install Apex will also enable all the extensions supported on ROCm including "--distributed_adam", "--distributed_lamb", "--bnp", "--xentropy", "--deprecated_fused_adam", "--deprecated_fused_lamb", and "--fast_multihead_attn".

### To install Apex on ROCm using ninja and without cloning the source
```
pip install ninja
pip install -v --install-option="--cpp_ext" --install-option="--cuda_ext" 'git+https://github.com/ROCmSoftwarePlatform/apex.git'
```

### Linux
For performance and full functionality, we recommend installing Apex with
CUDA and C++ extensions via
```bash
git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./
```

Apex also supports a Python-only build via
```bash
pip install -v --disable-pip-version-check --no-cache-dir ./
```
A Python-only build omits:
- Fused kernels required to use `apex.optimizers.FusedAdam`.
- Fused kernels required to use `apex.normalization.FusedLayerNorm` and `apex.normalization.FusedRMSNorm`.
- Fused kernels that improve the performance and numerical stability of `apex.parallel.SyncBatchNorm`.
- Fused kernels that improve the performance of `apex.parallel.DistributedDataParallel` and `apex.amp`.
`DistributedDataParallel`, `amp`, and `SyncBatchNorm` will still be usable, but they may be slower.


### [Experimental] Windows
`pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" .` may work if you were able to build Pytorch from source
on your system. A Python-only build via `pip install -v --no-cache-dir .` is more likely to work.  
If you installed Pytorch in a Conda environment, make sure to install Apex in that same environment.