parallel_state.py 22.3 KB
Newer Older
Masaki Kozuki's avatar
Masaki Kozuki committed
1
# coding=utf-8
2
# Copyright (c) 2021, NVIDIA CORPORATION.  All rights reserved.
Masaki Kozuki's avatar
Masaki Kozuki committed
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
15
16
# TODO (mkozuki): Replace assert with RuntimeError.
# TODO (mkozuki): Sort the functions in the same order of megatron/mpu/initialize.py
Masaki Kozuki's avatar
Masaki Kozuki committed
17
"""Model and data parallel groups."""
18
from typing import Tuple, Optional
19

Masaki Kozuki's avatar
Masaki Kozuki committed
20
21
import torch

22
23
24
25
26
27
28
29
30
from apex.transformer.log_util import get_transformer_logger


_logger = get_transformer_logger(__name__)

# set(megatron_mpu_initialize_funcs) - set(apex.transformer.parallel_state) =
# {
#     'get_num_layers',
# }
Masaki Kozuki's avatar
Masaki Kozuki committed
31
32
33
34
35
36
37
38
39
40


# Intra-layer model parallel group that the current rank belongs to.
_TENSOR_MODEL_PARALLEL_GROUP = None
# Inter-layer model parallel group that the current rank belongs to.
_PIPELINE_MODEL_PARALLEL_GROUP = None
# Model parallel group (both intra- and pipeline) that the current rank belongs to.
_MODEL_PARALLEL_GROUP = None
# Embedding group.
_EMBEDDING_GROUP = None
41
42
# Position embedding group.
_POSITION_EMBEDDING_GROUP = None
Masaki Kozuki's avatar
Masaki Kozuki committed
43
44
45
46
47
# Data parallel group that the current rank belongs to.
_DATA_PARALLEL_GROUP = None

_VIRTUAL_PIPELINE_MODEL_PARALLEL_RANK = None
_VIRTUAL_PIPELINE_MODEL_PARALLEL_WORLD_SIZE = None
48
_PIPELINE_MODEL_PARALLEL_SPLIT_RANK = None
Masaki Kozuki's avatar
Masaki Kozuki committed
49
50
51
52
53
54
55

# These values enable us to change the mpu sizes on the fly.
_MPU_TENSOR_MODEL_PARALLEL_WORLD_SIZE = None
_MPU_PIPELINE_MODEL_PARALLEL_WORLD_SIZE = None
_MPU_TENSOR_MODEL_PARALLEL_RANK = None
_MPU_PIPELINE_MODEL_PARALLEL_RANK = None

eqy's avatar
eqy committed
56
57
58
# A list of ranks that have a copy of the embedding.
_EMBEDDING_GLOBAL_RANKS = None

59
60
61
# A list of ranks that have a copy of the position embedding.
_POSITION_EMBEDDING_GLOBAL_RANKS = None

Masaki Kozuki's avatar
Masaki Kozuki committed
62
63
64
65
66
67
68
69
70
71
72
# A list of global ranks for each pipeline group to ease calculation of the source
# rank when broadcasting from the first or last pipeline stage
_PIPELINE_GLOBAL_RANKS = None


def is_unitialized():
    """Useful for code segments that may be accessed with or without mpu initialization"""
    return _DATA_PARALLEL_GROUP is None


def initialize_model_parallel(
73
74
75
76
    tensor_model_parallel_size_: int = 1,
    pipeline_model_parallel_size_: int = 1,
    virtual_pipeline_model_parallel_size_: Optional[int] = None,
    pipeline_model_parallel_split_rank_: Optional[int] = None,
77
) -> None:
Masaki Kozuki's avatar
Masaki Kozuki committed
78
79
80
81
82
83
    """
    Initialize model data parallel groups.

    Arguments:
        tensor_model_parallel_size: number of GPUs used to parallelize model tensor.
        pipeline_model_parallel_size: number of GPUs used to parallelize model pipeline.
84
85
        virtual_pipeline_model_parallel_size: number of virtual stages (interleaved pipeline).
        pipeline_model_parallel_split_rank: for models with both encoder and decoder, rank in pipeline with split point.
Masaki Kozuki's avatar
Masaki Kozuki committed
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104

    Let's say we have a total of 16 GPUs denoted by g0 ... g15 and we
    use 2 GPUs to parallelize the model tensor, and 4 GPUs to parallelize
    the model pipeline. The present function will
    create 8 tensor model-parallel groups, 4 pipeline model-parallel groups
    and 8 data-parallel groups as:
        8 data_parallel groups:
            [g0, g2], [g1, g3], [g4, g6], [g5, g7], [g8, g10], [g9, g11], [g12, g14], [g13, g15]
        8 tensor model-parallel groups:
            [g0, g1], [g2, g3], [g4, g5], [g6, g7], [g8, g9], [g10, g11], [g12, g13], [g14, g15]
        4 pipeline model-parallel groups:
            [g0, g4, g8, g12], [g1, g5, g9, g13], [g2, g6, g10, g14], [g3, g7, g11, g15]
    Note that for efficiency, the caller should make sure adjacent ranks
    are on the same DGX box. For example if we are using 2 DGX-1 boxes
    with a total of 16 GPUs, rank 0 to 7 belong to the first box and
    ranks 8 to 15 belong to the second box.
    """
    # Get world size and rank. Ensure some consistencies.
    assert torch.distributed.is_initialized()
105
106
107
108
109
110
111
112
113
114
    world_size: int = torch.distributed.get_world_size()
    tensor_model_parallel_size: int = min(tensor_model_parallel_size_, world_size)
    pipeline_model_parallel_size: int = min(pipeline_model_parallel_size_, world_size)
    if world_size % (tensor_model_parallel_size * pipeline_model_parallel_size) != 0:
        raise RuntimeError(
            f"`world_size` ({world_size}) is not divisible by tensor_model_parallel_size ({tensor_model_parallel_size}) x pipeline_model_parallel_size ({pipeline_model_parallel_size})"
        )
    data_parallel_size: int = world_size // (
        tensor_model_parallel_size * pipeline_model_parallel_size
    )
115
    if torch.distributed.get_rank() == 0:
116
117
118
119
120
121
122
123
124
125
126
127
128
        _logger.info(
            "> initializing tensor model parallel with size {}".format(
                tensor_model_parallel_size
            )
        )
        _logger.info(
            "> initializing pipeline model parallel with size {}".format(
                pipeline_model_parallel_size
            )
        )
        _logger.info(
            "> initializing data parallel with size {}".format(data_parallel_size)
        )
Masaki Kozuki's avatar
Masaki Kozuki committed
129

130
131
132
    num_tensor_model_parallel_groups: int = world_size // tensor_model_parallel_size
    num_pipeline_model_parallel_groups: int = world_size // pipeline_model_parallel_size
    num_data_parallel_groups: int = world_size // data_parallel_size
Masaki Kozuki's avatar
Masaki Kozuki committed
133
134

    if virtual_pipeline_model_parallel_size_ is not None:
135
136
137
138
        # assert pipeline_model_parallel_size_ > 2, (
        #     "pipeline-model-parallel size should be greater than 2 with "
        #     "interleaved schedule"
        # )
Masaki Kozuki's avatar
Masaki Kozuki committed
139
140
141
        global _VIRTUAL_PIPELINE_MODEL_PARALLEL_RANK
        global _VIRTUAL_PIPELINE_MODEL_PARALLEL_WORLD_SIZE
        _VIRTUAL_PIPELINE_MODEL_PARALLEL_RANK = 0
142
143
144
        _VIRTUAL_PIPELINE_MODEL_PARALLEL_WORLD_SIZE = (
            virtual_pipeline_model_parallel_size_
        )
Masaki Kozuki's avatar
Masaki Kozuki committed
145

146
147
148
149
    if pipeline_model_parallel_split_rank_ is not None:
        global _PIPELINE_MODEL_PARALLEL_SPLIT_RANK
        _PIPELINE_MODEL_PARALLEL_SPLIT_RANK = pipeline_model_parallel_split_rank_

Masaki Kozuki's avatar
Masaki Kozuki committed
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
    rank = torch.distributed.get_rank()

    # Build the data-parallel groups.
    global _DATA_PARALLEL_GROUP
    assert _DATA_PARALLEL_GROUP is None, "data parallel group is already initialized"
    all_data_parallel_group_ranks = []
    for i in range(pipeline_model_parallel_size):
        start_rank = i * num_pipeline_model_parallel_groups
        end_rank = (i + 1) * num_pipeline_model_parallel_groups
        for j in range(tensor_model_parallel_size):
            ranks = range(start_rank + j, end_rank, tensor_model_parallel_size)
            all_data_parallel_group_ranks.append(list(ranks))
            group = torch.distributed.new_group(ranks)
            if rank in ranks:
                _DATA_PARALLEL_GROUP = group

    # Build the model-parallel groups.
    global _MODEL_PARALLEL_GROUP
    assert _MODEL_PARALLEL_GROUP is None, "model parallel group is already initialized"
    for i in range(data_parallel_size):
170
171
172
173
        ranks = [
            data_parallel_group_ranks[i]
            for data_parallel_group_ranks in all_data_parallel_group_ranks
        ]
Masaki Kozuki's avatar
Masaki Kozuki committed
174
175
176
177
178
179
        group = torch.distributed.new_group(ranks)
        if rank in ranks:
            _MODEL_PARALLEL_GROUP = group

    # Build the tensor model-parallel groups.
    global _TENSOR_MODEL_PARALLEL_GROUP
180
181
182
    assert (
        _TENSOR_MODEL_PARALLEL_GROUP is None
    ), "tensor model parallel group is already initialized"
Masaki Kozuki's avatar
Masaki Kozuki committed
183
    for i in range(num_tensor_model_parallel_groups):
184
185
186
        ranks = list(
            range(i * tensor_model_parallel_size, (i + 1) * tensor_model_parallel_size)
        )
Masaki Kozuki's avatar
Masaki Kozuki committed
187
188
189
190
191
192
193
194
        group = torch.distributed.new_group(ranks)
        if rank in ranks:
            _TENSOR_MODEL_PARALLEL_GROUP = group

    # Build the pipeline model-parallel groups and embedding groups
    # (first and last rank in each pipeline model-parallel group).
    global _PIPELINE_MODEL_PARALLEL_GROUP
    global _PIPELINE_GLOBAL_RANKS
195
196
197
    assert (
        _PIPELINE_MODEL_PARALLEL_GROUP is None
    ), "pipeline model parallel group is already initialized"
Masaki Kozuki's avatar
Masaki Kozuki committed
198
    global _EMBEDDING_GROUP
eqy's avatar
eqy committed
199
    global _EMBEDDING_GLOBAL_RANKS
Masaki Kozuki's avatar
Masaki Kozuki committed
200
    assert _EMBEDDING_GROUP is None, "embedding group is already initialized"
201
202
203
204
205
    global _POSITION_EMBEDDING_GROUP
    global _POSITION_EMBEDDING_GLOBAL_RANKS
    assert (
        _POSITION_EMBEDDING_GROUP is None
    ), "position embedding group is already initialized"
Masaki Kozuki's avatar
Masaki Kozuki committed
206
207
208
209
210
211
212
213
214
215
    for i in range(num_pipeline_model_parallel_groups):
        ranks = range(i, world_size, num_pipeline_model_parallel_groups)
        group = torch.distributed.new_group(ranks)
        if rank in ranks:
            _PIPELINE_MODEL_PARALLEL_GROUP = group
            _PIPELINE_GLOBAL_RANKS = ranks
        # Setup embedding group (to exchange gradients between
        # first and last stages).
        if len(ranks) > 1:
            embedding_ranks = [ranks[0], ranks[-1]]
216
            position_embedding_ranks = [ranks[0]]
217
            if pipeline_model_parallel_split_rank_ is not None:
218
                if ranks[pipeline_model_parallel_split_rank_] not in embedding_ranks:
219
220
221
222
223
224
225
226
227
228
229
230
231
                    embedding_ranks = [
                        ranks[0],
                        ranks[pipeline_model_parallel_split_rank_],
                        ranks[-1],
                    ]
                if (
                    ranks[pipeline_model_parallel_split_rank_]
                    not in position_embedding_ranks
                ):
                    position_embedding_ranks = [
                        ranks[0],
                        ranks[pipeline_model_parallel_split_rank_],
                    ]
Masaki Kozuki's avatar
Masaki Kozuki committed
232
233
        else:
            embedding_ranks = ranks
234
235
            position_embedding_ranks = ranks

Masaki Kozuki's avatar
Masaki Kozuki committed
236
237
238
        group = torch.distributed.new_group(embedding_ranks)
        if rank in embedding_ranks:
            _EMBEDDING_GROUP = group
eqy's avatar
eqy committed
239
240
        if rank in ranks:
            _EMBEDDING_GLOBAL_RANKS = embedding_ranks
Masaki Kozuki's avatar
Masaki Kozuki committed
241

242
243
244
245
246
247
248
        group = torch.distributed.new_group(position_embedding_ranks)
        if rank in position_embedding_ranks:
            _POSITION_EMBEDDING_GROUP = group
        if rank in ranks:
            _POSITION_EMBEDDING_GLOBAL_RANKS = position_embedding_ranks


249
def get_rank_info() -> Tuple[int, int, int]:
250
    """Returns a tuple of (data, tensor, pipeline, virtual pipeline)-parallel-rank for logger."""
251
252
    if model_parallel_is_initialized():
        return (
253
            get_data_parallel_rank(),
254
255
            get_tensor_model_parallel_rank(),
            get_pipeline_model_parallel_rank(),
256
            get_virtual_pipeline_model_parallel_rank(),
257
        )
258
    return (0, 0, 0, 0)
259
260


Masaki Kozuki's avatar
Masaki Kozuki committed
261
262
def model_parallel_is_initialized():
    """Check if model and data parallel groups are initialized."""
263
264
265
266
267
    if (
        _TENSOR_MODEL_PARALLEL_GROUP is None
        or _PIPELINE_MODEL_PARALLEL_GROUP is None
        or _DATA_PARALLEL_GROUP is None
    ):
Masaki Kozuki's avatar
Masaki Kozuki committed
268
269
270
271
272
273
274
275
276
277
278
279
        return False
    return True


def get_model_parallel_group():
    """Get the model parallel group the caller rank belongs to."""
    assert _MODEL_PARALLEL_GROUP is not None, "model parallel group is not initialized"
    return _MODEL_PARALLEL_GROUP


def get_tensor_model_parallel_group():
    """Get the tensor model parallel group the caller rank belongs to."""
280
281
282
    assert (
        _TENSOR_MODEL_PARALLEL_GROUP is not None
    ), "intra_layer_model parallel group is not initialized"
Masaki Kozuki's avatar
Masaki Kozuki committed
283
284
285
286
287
    return _TENSOR_MODEL_PARALLEL_GROUP


def get_pipeline_model_parallel_group():
    """Get the pipeline model parallel group the caller rank belongs to."""
288
289
290
    assert (
        _PIPELINE_MODEL_PARALLEL_GROUP is not None
    ), "pipeline_model parallel group is not initialized"
Masaki Kozuki's avatar
Masaki Kozuki committed
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
    return _PIPELINE_MODEL_PARALLEL_GROUP


def get_data_parallel_group():
    """Get the data parallel group the caller rank belongs to."""
    assert _DATA_PARALLEL_GROUP is not None, "data parallel group is not initialized"
    return _DATA_PARALLEL_GROUP


def get_embedding_group():
    """Get the embedding group the caller rank belongs to."""
    assert _EMBEDDING_GROUP is not None, "embedding group is not initialized"
    return _EMBEDDING_GROUP


306
307
308
309
310
311
312
313
def get_position_embedding_group():
    """Get the position embedding group the caller rank belongs to."""
    assert (
        _POSITION_EMBEDDING_GROUP is not None
    ), "position embedding group is not initialized"
    return _POSITION_EMBEDDING_GROUP


eqy's avatar
eqy committed
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
def is_rank_in_embedding_group(ignore_virtual=False):
    """Return true if current rank is in embedding group, False otherwise."""
    rank = torch.distributed.get_rank()
    global _EMBEDDING_GLOBAL_RANKS
    if ignore_virtual:
        return rank in _EMBEDDING_GLOBAL_RANKS
    if rank in _EMBEDDING_GLOBAL_RANKS:
        if rank == _EMBEDDING_GLOBAL_RANKS[0]:
            return is_pipeline_first_stage(ignore_virtual=False)
        elif rank == _EMBEDDING_GLOBAL_RANKS[-1]:
            return is_pipeline_last_stage(ignore_virtual=False)
        else:
            return True
    return False


330
331
332
333
334
335
336
def is_rank_in_position_embedding_group():
    """Return whether the current rank is in position embedding group."""
    rank = torch.distributed.get_rank()
    global _POSITION_EMBEDDING_GLOBAL_RANKS
    return rank in _POSITION_EMBEDDING_GLOBAL_RANKS


337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
def is_pipeline_stage_before_split(rank=None):
    """Return True if pipeline stage executes encoder block for a model
    with both encoder and decoder."""
    if get_pipeline_model_parallel_world_size() == 1:
        return True
    if rank is None:
        rank = get_pipeline_model_parallel_rank()
    global _PIPELINE_MODEL_PARALLEL_SPLIT_RANK
    if _PIPELINE_MODEL_PARALLEL_SPLIT_RANK is None:
        return True
    if rank < _PIPELINE_MODEL_PARALLEL_SPLIT_RANK:
        return True
    return False


def is_pipeline_stage_after_split(rank=None):
    """Return True if pipeline stage executes decoder block for a model
    with both encoder and decoder."""
    if get_pipeline_model_parallel_world_size() == 1:
        return True
    if rank is None:
        rank = get_pipeline_model_parallel_rank()
    global _PIPELINE_MODEL_PARALLEL_SPLIT_RANK
    if _PIPELINE_MODEL_PARALLEL_SPLIT_RANK is None:
        return True
    if rank >= _PIPELINE_MODEL_PARALLEL_SPLIT_RANK:
        return True
    return False


def is_pipeline_stage_at_split():
    """Return true if pipeline stage executes decoder block and next
    stage executes encoder block for a model with both encoder and
    decoder."""
    rank = get_pipeline_model_parallel_rank()
372
373
374
    return is_pipeline_stage_before_split(rank) and is_pipeline_stage_after_split(
        rank + 1
    )
375
376


Masaki Kozuki's avatar
Masaki Kozuki committed
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
def set_tensor_model_parallel_world_size(world_size):
    """Set the tensor model parallel size"""
    global _MPU_TENSOR_MODEL_PARALLEL_WORLD_SIZE
    _MPU_TENSOR_MODEL_PARALLEL_WORLD_SIZE = world_size


def set_pipeline_model_parallel_world_size(world_size):
    """Set the pipeline model parallel size"""
    global _MPU_PIPELINE_MODEL_PARALLEL_WORLD_SIZE
    _MPU_PIPELINE_MODEL_PARALLEL_WORLD_SIZE = world_size


def get_tensor_model_parallel_world_size():
    """Return world size for the tensor model parallel group."""
    global _MPU_TENSOR_MODEL_PARALLEL_WORLD_SIZE
    if _MPU_TENSOR_MODEL_PARALLEL_WORLD_SIZE is not None:
        return _MPU_TENSOR_MODEL_PARALLEL_WORLD_SIZE
    return torch.distributed.get_world_size(group=get_tensor_model_parallel_group())


def get_pipeline_model_parallel_world_size():
    """Return world size for the pipeline model parallel group."""
    global _MPU_PIPELINE_MODEL_PARALLEL_WORLD_SIZE
    if _MPU_PIPELINE_MODEL_PARALLEL_WORLD_SIZE is not None:
        return _MPU_PIPELINE_MODEL_PARALLEL_WORLD_SIZE
    return torch.distributed.get_world_size(group=get_pipeline_model_parallel_group())


def set_tensor_model_parallel_rank(rank):
    """Set tensor model parallel rank."""
    global _MPU_TENSOR_MODEL_PARALLEL_RANK
    _MPU_TENSOR_MODEL_PARALLEL_RANK = rank


def set_pipeline_model_parallel_rank(rank):
    """Set pipeline model parallel rank."""
    global _MPU_PIPELINE_MODEL_PARALLEL_RANK
    _MPU_PIPELINE_MODEL_PARALLEL_RANK = rank


def get_tensor_model_parallel_rank():
    """Return my rank for the tensor model parallel group."""
    global _MPU_TENSOR_MODEL_PARALLEL_RANK
    if _MPU_TENSOR_MODEL_PARALLEL_RANK is not None:
        return _MPU_TENSOR_MODEL_PARALLEL_RANK
    return torch.distributed.get_rank(group=get_tensor_model_parallel_group())


def get_pipeline_model_parallel_rank():
    """Return my rank for the pipeline model parallel group."""
    global _MPU_PIPELINE_MODEL_PARALLEL_RANK
    if _MPU_PIPELINE_MODEL_PARALLEL_RANK is not None:
        return _MPU_PIPELINE_MODEL_PARALLEL_RANK
    return torch.distributed.get_rank(group=get_pipeline_model_parallel_group())


433
434
435
# TODO (mkozuki): Add [`get_num_layers`](https://github.com/NVIDIA/Megatron-LM/blob/e156d2fea7fc5c98e645f7742eb86b643956d840/megatron/mpu/initialize.py#L321) here, maybe?


436
437
438
439
440
441
def get_pipeline_model_parallel_split_rank():
    """Return my rank for the pipeline model parallel split rank."""
    global _PIPELINE_MODEL_PARALLEL_SPLIT_RANK
    return _PIPELINE_MODEL_PARALLEL_SPLIT_RANK


442
443
444
445
446
447
def set_pipeline_model_parallel_split_rank(pipeline_model_parallel_split_rank: int):
    """Set my rank for the pipeline model parallel split rank."""
    global _PIPELINE_MODEL_PARALLEL_SPLIT_RANK
    _PIPELINE_MODEL_PARALLEL_SPLIT_RANK = pipeline_model_parallel_split_rank


Masaki Kozuki's avatar
Masaki Kozuki committed
448
449
450
451
452
453
454
455
456
457
458
459
460
461
def is_pipeline_first_stage(ignore_virtual=False):
    """Return True if in the first pipeline model-parallel stage, False otherwise."""
    if not ignore_virtual:
        if (
            get_virtual_pipeline_model_parallel_world_size() is not None
            and get_virtual_pipeline_model_parallel_rank() != 0
        ):
            return False
    return get_pipeline_model_parallel_rank() == 0


def is_pipeline_last_stage(ignore_virtual=False):
    """Return True if in the last pipeline model-parallel stage, False otherwise."""
    if not ignore_virtual:
462
463
464
        virtual_pipeline_model_parallel_world_size = (
            get_virtual_pipeline_model_parallel_world_size()
        )
Masaki Kozuki's avatar
Masaki Kozuki committed
465
466
467
468
        if virtual_pipeline_model_parallel_world_size is not None and get_virtual_pipeline_model_parallel_rank() != (
            virtual_pipeline_model_parallel_world_size - 1
        ):
            return False
469
470
471
    return get_pipeline_model_parallel_rank() == (
        get_pipeline_model_parallel_world_size() - 1
    )
Masaki Kozuki's avatar
Masaki Kozuki committed
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499


def get_virtual_pipeline_model_parallel_rank():
    """Return the virtual pipeline-parallel rank."""
    global _VIRTUAL_PIPELINE_MODEL_PARALLEL_RANK
    return _VIRTUAL_PIPELINE_MODEL_PARALLEL_RANK


def set_virtual_pipeline_model_parallel_rank(rank):
    """Set the virtual pipeline-parallel rank."""
    global _VIRTUAL_PIPELINE_MODEL_PARALLEL_RANK
    _VIRTUAL_PIPELINE_MODEL_PARALLEL_RANK = rank


def get_virtual_pipeline_model_parallel_world_size():
    """Return the virtual pipeline-parallel world size."""
    global _VIRTUAL_PIPELINE_MODEL_PARALLEL_WORLD_SIZE
    return _VIRTUAL_PIPELINE_MODEL_PARALLEL_WORLD_SIZE


def get_tensor_model_parallel_src_rank():
    """Calculate the global rank corresponding to the first local rank
    in the tensor model parallel group."""
    global_rank = torch.distributed.get_rank()
    local_world_size = get_tensor_model_parallel_world_size()
    return (global_rank // local_world_size) * local_world_size


500
501
502
503
504
505
506
507
def get_data_parallel_src_rank():
    """Calculate the global rank corresponding to the first local rank in the data parallel group."""
    global_rank = torch.distributed.get_rank()
    data_parallel_size: int = get_data_parallel_world_size()
    num_data_parallel_groups = torch.distributed.get_world_size() // data_parallel_size
    return global_rank % num_data_parallel_groups


Masaki Kozuki's avatar
Masaki Kozuki committed
508
def get_pipeline_model_parallel_first_rank():
509
510
511
    assert (
        _PIPELINE_GLOBAL_RANKS is not None
    ), "Pipeline parallel group is not initialized"
Masaki Kozuki's avatar
Masaki Kozuki committed
512
513
514
515
    return _PIPELINE_GLOBAL_RANKS[0]


def get_pipeline_model_parallel_last_rank():
516
517
518
    assert (
        _PIPELINE_GLOBAL_RANKS is not None
    ), "Pipeline parallel group is not initialized"
Masaki Kozuki's avatar
Masaki Kozuki committed
519
520
521
522
523
    last_rank_local = get_pipeline_model_parallel_world_size() - 1
    return _PIPELINE_GLOBAL_RANKS[last_rank_local]


def get_pipeline_model_parallel_next_rank():
524
525
526
    assert (
        _PIPELINE_GLOBAL_RANKS is not None
    ), "Pipeline parallel group is not initialized"
Masaki Kozuki's avatar
Masaki Kozuki committed
527
528
529
530
531
532
    rank_in_pipeline = get_pipeline_model_parallel_rank()
    world_size = get_pipeline_model_parallel_world_size()
    return _PIPELINE_GLOBAL_RANKS[(rank_in_pipeline + 1) % world_size]


def get_pipeline_model_parallel_prev_rank():
533
534
535
    assert (
        _PIPELINE_GLOBAL_RANKS is not None
    ), "Pipeline parallel group is not initialized"
Masaki Kozuki's avatar
Masaki Kozuki committed
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
    rank_in_pipeline = get_pipeline_model_parallel_rank()
    world_size = get_pipeline_model_parallel_world_size()
    return _PIPELINE_GLOBAL_RANKS[(rank_in_pipeline - 1) % world_size]


def get_data_parallel_world_size():
    """Return world size for the data parallel group."""
    return torch.distributed.get_world_size(group=get_data_parallel_group())


def get_data_parallel_rank():
    """Return my rank for the data parallel group."""
    return torch.distributed.get_rank(group=get_data_parallel_group())


551
552
553
# note (mkozuki): `destroy_model_parallel` voids more global variables than Megatron-LM.
# Otherwise pipeline parallel forward_backward functions test hangs possibly because
# the clean-up of the original is NOT enough.
Masaki Kozuki's avatar
Masaki Kozuki committed
554
555
556
557
558
559
560
561
562
563
564
565
def destroy_model_parallel():
    """Set the groups to none."""
    global _MODEL_PARALLEL_GROUP
    _MODEL_PARALLEL_GROUP = None
    global _TENSOR_MODEL_PARALLEL_GROUP
    _TENSOR_MODEL_PARALLEL_GROUP = None
    global _PIPELINE_MODEL_PARALLEL_GROUP
    _PIPELINE_MODEL_PARALLEL_GROUP = None
    global _DATA_PARALLEL_GROUP
    _DATA_PARALLEL_GROUP = None
    global _EMBEDDING_GROUP
    _EMBEDDING_GROUP = None
566
567
    global _POSITION_EMBEDDING_GROUP
    _POSITION_EMBEDDING_GROUP = None
568
569
570
571
572
573
574
575
576
577
578
579
    global _VIRTUAL_PIPELINE_MODEL_PARALLEL_RANK
    _VIRTUAL_PIPELINE_MODEL_PARALLEL_RANK = None
    global _VIRTUAL_PIPELINE_MODEL_PARALLEL_WORLD_SIZE
    _VIRTUAL_PIPELINE_MODEL_PARALLEL_WORLD_SIZE = None
    global _MPU_TENSOR_MODEL_PARALLEL_WORLD_SIZE
    _MPU_TENSOR_MODEL_PARALLEL_WORLD_SIZE = None
    global _MPU_PIPELINE_MODEL_PARALLEL_WORLD_SIZE
    _MPU_PIPELINE_MODEL_PARALLEL_WORLD_SIZE = None
    global _MPU_TENSOR_MODEL_PARALLEL_RANK
    _MPU_TENSOR_MODEL_PARALLEL_RANK = None
    global _MPU_PIPELINE_MODEL_PARALLEL_RANK
    _MPU_PIPELINE_MODEL_PARALLEL_RANK = None