test_cross_entropy.py 3.52 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
import logging
from typing import Tuple

import torch
import torch.nn.functional as F
from torch.testing._internal import common_utils

logging.getLogger("torch").setLevel(logging.WARNING)

from apex.transformer import parallel_state
from apex.transformer import tensor_parallel
from apex.transformer.tensor_parallel import cross_entropy
from apex.transformer.testing.commons import set_random_seed, IdentityLayer
14
15
from apex.transformer.testing.distributed_test_base import NcclDistributedTestBase
from apex.transformer.testing.distributed_test_base import UccDistributedTestBase
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

logging.getLogger("apex").setLevel(logging.WARNING)


def torch_cross_entropy(
    batch_size: int, seq_length: int, vocab_size: int, logits_scale: float, seed: int,
) -> Tuple[torch.Tensor, torch.Tensor]:
    set_random_seed(seed)
    identity = IdentityLayer(
        (batch_size, seq_length, vocab_size), scale=logits_scale
    ).cuda()
    logits = identity()
    target = torch.cuda.LongTensor(size=(batch_size, seq_length)).random_(0, vocab_size)
    loss = (
        F.cross_entropy(
            logits.view(-1, logits.size()[-1]), target.view(-1), reduction="none"
        )
        .view_as(target)
        .mean()
    )
    loss.backward()
    return loss, identity.weight.grad


def tensor_sharded_cross_entropy(
    batch_size, seq_length, vocab_size, logits_scale, seed
):
    set_random_seed(seed)
    identity = IdentityLayer(
        (batch_size, seq_length, vocab_size), scale=logits_scale
    ).cuda()
    logits = identity()
    logits_parallel = tensor_parallel.scatter_to_tensor_model_parallel_region(logits)
    target = torch.cuda.LongTensor(size=(batch_size, seq_length)).random_(0, vocab_size)
    logits_parallel_ = logits_parallel.clone().detach()
    loss = cross_entropy.vocab_parallel_cross_entropy(logits_parallel, target).mean()
    loss.backward()
    # check for mutation
    assert torch.equal(logits_parallel_, logits_parallel)
    return loss, identity.weight.grad


58
class VocabParallelCrossEntropyTestBase:
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
    def test_cross_entropy(self):
        batch_size, sequence_length, vocab_size_per_partition = 13, 17, 11
        logits_scale = 1000.0
        seed = 1234
        for tensor_model_parallel_world_size in range(1, self.world_size + 1):
            if self.world_size % tensor_model_parallel_world_size:
                continue
            with self.subTest(
                tensor_model_parallel_world_size=tensor_model_parallel_world_size
            ):
                parallel_state.initialize_model_parallel(
                    tensor_model_parallel_size_=tensor_model_parallel_world_size,
                )
                vocab_size = vocab_size_per_partition * tensor_model_parallel_world_size
                loss_torch, grad_torch = torch_cross_entropy(
                    batch_size, sequence_length, vocab_size, logits_scale, seed
                )
                (
                    loss_tensor_parallel,
                    grad_tensor_parallel,
                ) = tensor_sharded_cross_entropy(
                    batch_size, sequence_length, vocab_size, logits_scale, seed
                )

Aidyn-A's avatar
Aidyn-A committed
83
84
                self.assertEqual(loss_torch, loss_tensor_parallel)
                self.assertEqual(grad_torch, grad_tensor_parallel)
85
86
87
88

                parallel_state.destroy_model_parallel()


89
90
91
92
class NcclVocabParallelCrossEntropyTest(VocabParallelCrossEntropyTestBase, NcclDistributedTestBase): pass
class UccVocabParallelCrossEntropyTest(VocabParallelCrossEntropyTestBase, UccDistributedTestBase): pass


93
94
if __name__ == "__main__":
    common_utils.run_tests()