multi_tensor_sgd_kernel.cu 7.02 KB
Newer Older
Simon Layton's avatar
Simon Layton committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
#include <ATen/ATen.h>
#include <ATen/AccumulateType.h>
#include <ATen/cuda/CUDAContext.h>
#include <ATen/cuda/Exceptions.h>
#include "multi_tensor_apply.cuh"

#include <assert.h>
#include <cuda_runtime.h>

#define BLOCK_SIZE 512
#define ILP 4

/**
 * Perform fused SGD on multiple buffers
15
 * N: number of tensors
Simon Layton's avatar
Simon Layton committed
16
17
18
 * tl[0] : gradients
 * tl[1] : weights
 * tl[2] : momentum buffers
19
 * tl[3] : fp16 weights (if appropriate)
Simon Layton's avatar
Simon Layton committed
20
21
22
23
24
25
 * wd : weight_decay (scalar)
 * momentum : momentum (scalar)
 * dampening : momentum dampening (scalar)
 * lr : learning rate (scalar)
 * nesterov : enable nesterov (bool)
 * first run : necessary for proper momentum handling & init
26
 * wd_after_momentum : apply weight decay _after_ momentum instead of before
Simon Layton's avatar
Simon Layton committed
27
 **/
28
template<int N, typename T_grad, typename T_weight>
Simon Layton's avatar
Simon Layton committed
29
30
31
32
33
struct SGDFunctor
{
   __device__ __forceinline__ void operator()(
    int chunk_size,
    volatile int* noop_gmem,
34
    TensorListMetadata<N>& tl,
Simon Layton's avatar
Simon Layton committed
35
36
37
38
39
    float wd,
    float momentum,
    float dampening,
    float lr,
    bool nesterov,
40
41
    bool first_run,
    bool wd_after_momentum)
Simon Layton's avatar
Simon Layton committed
42
  {
Simon Layton's avatar
Simon Layton committed
43
44
    // Early exit if we don't need to do anything
    if (*noop_gmem) return;
Simon Layton's avatar
Simon Layton committed
45
46
47
48
49

    int tensor_loc = tl.block_to_tensor[blockIdx.x];
    int chunk_idx = tl.block_to_chunk[blockIdx.x];
    int n = tl.sizes[tensor_loc];

50
    T_grad* grad_in = (T_grad*)tl.addresses[0][tensor_loc];
Simon Layton's avatar
Simon Layton committed
51
    grad_in += chunk_idx*chunk_size;
Michael Carilli's avatar
cleanup  
Michael Carilli committed
52

53
    T_weight* weight_in = (T_weight*)tl.addresses[1][tensor_loc];
Simon Layton's avatar
Simon Layton committed
54
55
    weight_in += chunk_idx*chunk_size;

56
    T_weight* mom_in = (T_weight*)tl.addresses[2][tensor_loc];
Simon Layton's avatar
Simon Layton committed
57
58
    mom_in += chunk_idx*chunk_size;

59
    at::Half *model_weights_out = nullptr;
60
    if (N == 4) {
61
      model_weights_out = (at::Half*)tl.addresses[3][tensor_loc];
62
63
64
      model_weights_out += chunk_idx*chunk_size;
    }

Simon Layton's avatar
Simon Layton committed
65
66
67
    n -= chunk_idx*chunk_size;

    // Non-divergent exit condition for the __syncthreads
68
69
70
    float incoming_grads[ILP];
    float incoming_weights[ILP];
    float incoming_moms[ILP];
Simon Layton's avatar
Simon Layton committed
71
72
73
74
75
76
77
78
79
80
81
82
    for(int i_start = 0;
        i_start < n && i_start < chunk_size;
        i_start += blockDim.x*ILP)
    {
      #pragma unroll
      for(int ii = 0; ii < ILP; ii++)
      {
        incoming_grads[ii] = 0;
        incoming_weights[ii] = 0;
        incoming_moms[ii] = 0;
        int i = i_start + threadIdx.x + ii*blockDim.x;
        if(i < n && i < chunk_size)
83
84
85
          incoming_grads[ii] = static_cast<float>(grad_in[i]);
          incoming_weights[ii] = static_cast<float>(weight_in[i]);
          incoming_moms[ii] = static_cast<float>(mom_in[i]);
Simon Layton's avatar
Simon Layton committed
86
87
88
89
90
91
92
93
94
95
96
97
      }

      // note for clarification to future michael:
      // From a pure memory dependency perspective, there's likely no point unrolling
      // the write loop, since writes just fire off once their LDGs arrive.
      // Put another way, the STGs are dependent on the LDGs, but not on each other.
      // There is still compute ILP benefit from unrolling the loop though.
      #pragma unroll
      for(int ii = 0; ii < ILP; ii++)
      {
        int i = i_start + threadIdx.x + ii*blockDim.x;
        if(i < n && i < chunk_size) {
98
99
          // apply weight decay before momentum if necessary
          if (wd != 0.f && !wd_after_momentum) {
Simon Layton's avatar
Simon Layton committed
100
101
102
103
104
            incoming_grads[ii] += wd * incoming_weights[ii];
          }
          if (momentum != 0.f) {
            if (!first_run) {
              incoming_moms[ii] = incoming_moms[ii] * momentum + (1.f - dampening) * incoming_grads[ii];
105
106
107
            } else {
              // initialize momentume to current incoming grads
              incoming_moms[ii] = incoming_grads[ii];
Simon Layton's avatar
Simon Layton committed
108
109
110
111
            }

            if (nesterov) {
              incoming_grads[ii] += momentum * incoming_moms[ii];
112
113
            } else {
              incoming_grads[ii] = incoming_moms[ii];
Simon Layton's avatar
Simon Layton committed
114
115
116
            }
          }

117
118
119
120
121
          // Apply WD after momentum if desired
          if (wd != 0.f && wd_after_momentum) {
            incoming_grads[ii] += wd * incoming_weights[ii];
          }

Simon Layton's avatar
Simon Layton committed
122
123
124
          // adjust the weight and write out
          weight_in[i] += (-lr * incoming_grads[ii]);

125
126
127
128
129
          // if necessary, write out an fp16 copy of the weights
          if (N == 4) {
            model_weights_out[i] = static_cast<at::Half>(weight_in[i]);
          }

Simon Layton's avatar
Simon Layton committed
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
          // also write out the new momentum
          if (momentum != 0.f) {
            mom_in[i] = incoming_moms[ii];
          }
        }
      }
    }
  }
};

void multi_tensor_sgd_cuda(
  int chunk_size,
  at::Tensor noop_flag,
  std::vector<std::vector<at::Tensor>> tensor_lists,
  float wd,
  float momentum,
  float dampening,
  float lr,
  bool nesterov,
149
150
  bool first_run,
  bool wd_after_momentum)
Simon Layton's avatar
Simon Layton committed
151
{
152
  auto num_tensors = tensor_lists.size();
Simon Layton's avatar
Simon Layton committed
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
  auto grad_type = tensor_lists[0][0].type().scalarType();
  auto weight_type = tensor_lists[0][0].type().scalarType();

  // We have 4 potentials to handle here, in terms of
  // grad_type, param_type, momentum_type, requires_fp16_copy
  // 1. fp16, fp16, fp16, No
  // 2. fp16, fp32, fp32, No
  // 3. fp16, fp32, fp32, Yes
  // 4. fp32, fp32, fp32, No
  // It's easier to hardcode these possibilities than to use
  // switches etc. to handle the cross-product of cases where
  // we don't want the majority of them.

  // Case 1. fp16, fp16, fp16, No
  if (grad_type == at::ScalarType::Half &&
      weight_type == at::ScalarType::Half &&
      num_tensors == 3) {
    multi_tensor_apply<3>(
        BLOCK_SIZE,
        chunk_size,
        noop_flag,
        tensor_lists,
        SGDFunctor<3, at::Half, at::Half>(),
        wd,
        momentum,
        dampening,
        lr,
        nesterov,
181
182
        first_run,
        wd_after_momentum);
Simon Layton's avatar
Simon Layton committed
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
  }
  // Case 2. fp16, fp32, fp32, No
  else if (grad_type == at::ScalarType::Half &&
           weight_type == at::ScalarType::Float &&
           num_tensors == 3) {
    multi_tensor_apply<3>(
        BLOCK_SIZE,
        chunk_size,
        noop_flag,
        tensor_lists,
        SGDFunctor<3, at::Half, float>(),
        wd,
        momentum,
        dampening,
        lr,
        nesterov,
199
200
        first_run,
        wd_after_momentum);
Simon Layton's avatar
Simon Layton committed
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
  }
  // Case 3. fp16, fp32, fp32, Yes
  else if (grad_type == at::ScalarType::Half &&
           weight_type == at::ScalarType::Float &&
           num_tensors == 4) {
    multi_tensor_apply<4>(
        BLOCK_SIZE,
        chunk_size,
        noop_flag,
        tensor_lists,
        SGDFunctor<4, at::Half, float>(),
        wd,
        momentum,
        dampening,
        lr,
        nesterov,
217
218
        first_run,
        wd_after_momentum);
Simon Layton's avatar
Simon Layton committed
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
  }
  // Case 4. fp32, fp32, fp32, No
  else if (grad_type == at::ScalarType::Float &&
      weight_type == at::ScalarType::Float &&
      num_tensors == 3) {
    multi_tensor_apply<3>(
        BLOCK_SIZE,
        chunk_size,
        noop_flag,
        tensor_lists,
        SGDFunctor<3, float, float>(),
        wd,
        momentum,
        dampening,
        lr,
        nesterov,
235
236
        first_run,
        wd_after_momentum);
Simon Layton's avatar
Simon Layton committed
237
238
239
240
  }
  else {
    AT_ERROR("multi_tensor_sgd only supports some combinations of gradient & weight types. Given: ",
             "gradient: ", grad_type, ", weight: ", weight_type, ", num_lists: ", num_tensors);
241
  }
Simon Layton's avatar
Simon Layton committed
242
243
244

  AT_CUDA_CHECK(cudaGetLastError());
}