run_data_test.py 3.25 KB
Newer Older
Masaki Kozuki's avatar
Masaki Kozuki committed
1
# coding=utf-8
2
# Copyright (c) 2021, NVIDIA CORPORATION.  All rights reserved.
Masaki Kozuki's avatar
Masaki Kozuki committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import functools
import operator

import torch

from apex.transformer import parallel_state
from apex.transformer.tensor_parallel import data as data_utils
22
23
24
25
from apex.transformer.testing import global_vars
from apex.transformer.testing.commons import print_separator
from apex.transformer.testing.commons import initialize_distributed
from apex.transformer.testing.commons import TEST_SUCCESS_MESSAGE
Masaki Kozuki's avatar
Masaki Kozuki committed
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

global_vars.set_global_variables()


def test_broadcast_data(tensor_model_parallel_size):

    if torch.distributed.get_rank() == 0:
        print('> testing broadcast_data with model parallel size {} ...'.
              format(tensor_model_parallel_size))

    parallel_state.initialize_model_parallel(tensor_model_parallel_size)
    torch.manual_seed(1234 + parallel_state.get_data_parallel_rank())
    tensor_model_parallel_size = parallel_state.get_tensor_model_parallel_world_size()

    key_size_t = {
        'key1': [7, 11],
        'key2': [8, 2, 1],
        'key3': [13],
        'key4': [5, 1, 2],
        'key5': [5, 12],
    }
    keys = list(key_size_t.keys())

    data = {}
    data_t = {}
    for key in key_size_t:
        data[key] = torch.LongTensor(size=key_size_t[key]).random_(0, 1000)
        data_t[key] = data[key].clone()
    data['keyX'] = torch.FloatTensor(size=(5, )).random_(0, 1000)
    data_t['keyX'] = data['keyX'].clone()
    if parallel_state.get_tensor_model_parallel_rank() != 0:
        data = None

    data_utils._check_data_types(keys, data_t, torch.int64)
    key_size, key_numel, \
        total_numel = data_utils._build_key_size_numel_dictionaries(keys, data)
    for key in keys:
        assert key_size[key] == key_size_t[key]
    total_numel_t = 0
    for key in keys:
        target_size = functools.reduce(operator.mul, key_size_t[key], 1)
        assert key_numel[key] == target_size
        total_numel_t += target_size
    assert total_numel == total_numel_t

    data_b = data_utils.broadcast_data(keys, data, torch.int64)
    for key in keys:
        tensor = data_t[key].cuda()
        assert data_b[key].sub(tensor).abs().max() == 0

    # Reset groups
    parallel_state.destroy_model_parallel()

    torch.distributed.barrier()
    if torch.distributed.get_rank() == 0:
        print(TEST_SUCCESS_MESSAGE)


if __name__ == '__main__':
85
86
    torch.backends.cuda.matmul.allow_tf32 = False
    torch.backends.cudnn.allow_tf32 = False
Masaki Kozuki's avatar
Masaki Kozuki committed
87
88
89
90
91
92
93
94
95

    initialize_distributed()
    world_size = torch.distributed.get_world_size()

    tensor_model_parallel_size = 1
    while tensor_model_parallel_size <= world_size:
        print_separator('test test broadcast data')
        test_broadcast_data(tensor_model_parallel_size)
        tensor_model_parallel_size *= 2