data.py 3.86 KB
Newer Older
Masaki Kozuki's avatar
Masaki Kozuki committed
1
# coding=utf-8
2
# Copyright (c) 2021, NVIDIA CORPORATION.  All rights reserved.
Masaki Kozuki's avatar
Masaki Kozuki committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch

17
18
19
from apex.transformer.parallel_state import get_tensor_model_parallel_group
from apex.transformer.parallel_state import get_tensor_model_parallel_rank
from apex.transformer.parallel_state import get_tensor_model_parallel_src_rank
Masaki Kozuki's avatar
Masaki Kozuki committed
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113


_MAX_DATA_DIM = 5


def _check_data_types(keys, data, target_dtype):
    """Check that all the keys have the same target data type."""
    for key in keys:
        assert data[key].dtype == target_dtype, "{} has data type {} which " "is different than {}".format(
            key, data[key].dtype, target_dtype
        )


def _build_key_size_numel_dictionaries(keys, data):
    """Build the size on rank 0 and broadcast."""
    max_dim = _MAX_DATA_DIM
    sizes = [0 for _ in range(max_dim) for _ in keys]

    # Pack the sizes on rank zero.
    if get_tensor_model_parallel_rank() == 0:
        offset = 0
        for key in keys:
            assert data[key].dim() < max_dim, "you should increase MAX_DATA_DIM"
            size = data[key].size()
            for i, s in enumerate(size):
                sizes[i + offset] = s
            offset += max_dim

    # Move to GPU and broadcast.
    sizes_cuda = torch.cuda.LongTensor(sizes)
    torch.distributed.broadcast(
        sizes_cuda, get_tensor_model_parallel_src_rank(), group=get_tensor_model_parallel_group(),
    )

    # Move back to cpu and unpack.
    sizes_cpu = sizes_cuda.cpu()
    key_size = {}
    key_numel = {}
    total_numel = 0
    offset = 0
    for key in keys:
        i = 0
        size = []
        numel = 1
        while sizes_cpu[offset + i] > 0:
            this_size = sizes_cpu[offset + i]
            size.append(this_size)
            numel *= this_size
            i += 1
        key_size[key] = size
        key_numel[key] = numel
        total_numel += numel
        offset += max_dim

    return key_size, key_numel, total_numel


def broadcast_data(keys, data, datatype):
    """Broadcast data from rank zero of each model parallel group to the
    members of the same model parallel group.

    Arguments:
        keys: list of keys in the data disctionary to be broadcasted
        data: data dictionary of string keys and cpu tensor values.
        datatype: torch data type of all tensors in data associated
                  with keys.
    """
    # Build (key, size) and (key, number of elements) dictionaries along
    # with the total number of elements on all ranks.
    key_size, key_numel, total_numel = _build_key_size_numel_dictionaries(keys, data)
    # Pack on rank zero.
    if get_tensor_model_parallel_rank() == 0:
        # Check that all keys have the same data type.
        _check_data_types(keys, data, datatype)
        # Flatten the data associated with the keys
        flatten_data = torch.cat([data[key].contiguous().view(-1) for key in keys], dim=0).cuda()
    else:
        flatten_data = torch.empty(total_numel, device=torch.cuda.current_device(), dtype=datatype)

    # Broadcast
    torch.distributed.broadcast(
        flatten_data, get_tensor_model_parallel_src_rank(), group=get_tensor_model_parallel_group(),
    )

    # Unpack
    output = {}
    offset = 0
    for key in keys:
        size = key_size[key]
        numel = key_numel[key]
        output[key] = flatten_data.narrow(0, offset, numel).view(size)
        offset += numel

    return output