main_amp.py 16.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
import argparse
import os
import shutil
import time

import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torchvision.models as models

Michael Carilli's avatar
Michael Carilli committed
18
19
import numpy as np

20
21
22
try:
    from apex.parallel import DistributedDataParallel as DDP
    from apex.fp16_utils import *
23
    from apex import amp
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
except ImportError:
    raise ImportError("Please install apex from https://www.github.com/nvidia/apex to run this example.")

model_names = sorted(name for name in models.__dict__
                     if name.islower() and not name.startswith("__")
                     and callable(models.__dict__[name]))

parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')
parser.add_argument('data', metavar='DIR',
                    help='path to dataset')
parser.add_argument('--arch', '-a', metavar='ARCH', default='resnet18',
                    choices=model_names,
                    help='model architecture: ' +
                    ' | '.join(model_names) +
                    ' (default: resnet18)')
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
                    help='number of data loading workers (default: 4)')
parser.add_argument('--epochs', default=90, type=int, metavar='N',
                    help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
                    help='manual epoch number (useful on restarts)')
parser.add_argument('-b', '--batch-size', default=256, type=int,
46
                    metavar='N', help='mini-batch size per process (default: 256)')
47
parser.add_argument('--lr', '--learning-rate', default=0.1, type=float,
48
                    metavar='LR', help='Initial learning rate.  Will be scaled by <global batch size>/256: args.lr = args.lr*float(args.batch_size*args.world_size)/256.  A warmup schedule will also be applied over the first 5 epochs.')
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
                    help='momentum')
parser.add_argument('--weight-decay', '--wd', default=1e-4, type=float,
                    metavar='W', help='weight decay (default: 1e-4)')
parser.add_argument('--print-freq', '-p', default=10, type=int,
                    metavar='N', help='print frequency (default: 10)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
                    help='path to latest checkpoint (default: none)')
parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true',
                    help='evaluate model on validation set')
parser.add_argument('--pretrained', dest='pretrained', action='store_true',
                    help='use pre-trained model')

parser.add_argument('--fp16', action='store_true',
                    help='Run model fp16 mode.')
parser.add_argument('--prof', dest='prof', action='store_true',
                    help='Only run 10 iterations for profiling.')
66
parser.add_argument('--deterministic', action='store_true')
67

68
parser.add_argument("--local_rank", default=0, type=int)
jjsjann123's avatar
jjsjann123 committed
69
70
parser.add_argument('--sync_bn', action='store_true',
                    help='enabling apex sync BN.')
71
72
73

cudnn.benchmark = True

Michael Carilli's avatar
Michael Carilli committed
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
def fast_collate(batch):
    imgs = [img[0] for img in batch]
    targets = torch.tensor([target[1] for target in batch], dtype=torch.int64)
    w = imgs[0].size[0]
    h = imgs[0].size[1]
    tensor = torch.zeros( (len(imgs), 3, h, w), dtype=torch.uint8 )
    for i, img in enumerate(imgs):
        nump_array = np.asarray(img, dtype=np.uint8)
        if(nump_array.ndim < 3):
            nump_array = np.expand_dims(nump_array, axis=-1)
        nump_array = np.rollaxis(nump_array, 2)

        tensor[i] += torch.from_numpy(nump_array)
        
    return tensor, targets

90
91
best_prec1 = 0
args = parser.parse_args()
92
93
94
95
96

if args.deterministic:
    cudnn.benchmark = False
    cudnn.deterministic = True
    torch.manual_seed(args.local_rank)
97
    torch.set_printoptions(precision=10)
98

99
100
101
# Initialize Amp 
amp_handle = amp.init(enabled=args.fp16)

102
103
104
def main():
    global best_prec1, args

105
106
107
108
    args.distributed = False
    if 'WORLD_SIZE' in os.environ:
        args.distributed = int(os.environ['WORLD_SIZE']) > 1

109
    args.gpu = 0
110
111
    args.world_size = 1

112
    if args.distributed:
113
        args.gpu = args.local_rank % torch.cuda.device_count()
114
        torch.cuda.set_device(args.gpu)
115
116
        torch.distributed.init_process_group(backend='nccl',
                                             init_method='env://')
117
        args.world_size = torch.distributed.get_world_size()
118
119
120
121
122
123
124
125
126
127
128

    if args.fp16:
        assert torch.backends.cudnn.enabled, "fp16 mode requires cudnn backend to be enabled."

    # create model
    if args.pretrained:
        print("=> using pre-trained model '{}'".format(args.arch))
        model = models.__dict__[args.arch](pretrained=True)
    else:
        print("=> creating model '{}'".format(args.arch))
        model = models.__dict__[args.arch]()
129

jjsjann123's avatar
jjsjann123 committed
130
131
132
133
    if args.sync_bn:
        import apex
        print("using apex synced BN")
        model = apex.parallel.convert_syncbn_model(model)
134
135

    model = model.cuda()
136

137
    if args.distributed:
138
139
140
141
142
        # By default, apex.parallel.DistributedDataParallel overlaps communication with 
        # computation in the backward pass.
        # model = DDP(model)
        # delay_allreduce delays all communication to the end of the backward pass.
        model = DDP(model, delay_allreduce=True)
143
144
145
146

    # define loss function (criterion) and optimizer
    criterion = nn.CrossEntropyLoss().cuda()

147
148
    # Scale learning rate based on global batch size
    args.lr = args.lr*float(args.batch_size*args.world_size)/256. 
149
150
151
152
    optimizer = torch.optim.SGD(model.parameters(), args.lr,
                                momentum=args.momentum,
                                weight_decay=args.weight_decay)

153
    # Optionally resume from a checkpoint
154
    if args.resume:
155
156
157
158
159
160
161
162
163
164
165
166
167
168
        # Use a local scope to avoid dangling references
        def resume():
            if os.path.isfile(args.resume):
                print("=> loading checkpoint '{}'".format(args.resume))
                checkpoint = torch.load(args.resume, map_location = lambda storage, loc: storage.cuda(args.gpu))
                args.start_epoch = checkpoint['epoch']
                best_prec1 = checkpoint['best_prec1']
                model.load_state_dict(checkpoint['state_dict'])
                optimizer.load_state_dict(checkpoint['optimizer'])
                print("=> loaded checkpoint '{}' (epoch {})"
                      .format(args.resume, checkpoint['epoch']))
            else:
                print("=> no checkpoint found at '{}'".format(args.resume))
        resume()
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185

    # Data loading code
    traindir = os.path.join(args.data, 'train')
    valdir = os.path.join(args.data, 'val')

    if(args.arch == "inception_v3"):
        crop_size = 299
        val_size = 320 # I chose this value arbitrarily, we can adjust.
    else:
        crop_size = 224
        val_size = 256

    train_dataset = datasets.ImageFolder(
        traindir,
        transforms.Compose([
            transforms.RandomResizedCrop(crop_size),
            transforms.RandomHorizontalFlip(),
Michael Carilli's avatar
Michael Carilli committed
186
187
            # transforms.ToTensor(), Too slow
            # normalize,
188
        ]))
189
190
191
192
    val_dataset = datasets.ImageFolder(valdir, transforms.Compose([
            transforms.Resize(val_size),
            transforms.CenterCrop(crop_size),
        ]))
193

194
195
    train_sampler = None
    val_sampler = None
196
197
    if args.distributed:
        train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
198
        val_sampler = torch.utils.data.distributed.DistributedSampler(val_dataset)
199
200
201

    train_loader = torch.utils.data.DataLoader(
        train_dataset, batch_size=args.batch_size, shuffle=(train_sampler is None),
Michael Carilli's avatar
Michael Carilli committed
202
        num_workers=args.workers, pin_memory=True, sampler=train_sampler, collate_fn=fast_collate)
203
204

    val_loader = torch.utils.data.DataLoader(
205
        val_dataset,
206
        batch_size=args.batch_size, shuffle=False,
Michael Carilli's avatar
Michael Carilli committed
207
        num_workers=args.workers, pin_memory=True,
208
        sampler=val_sampler,
Michael Carilli's avatar
Michael Carilli committed
209
        collate_fn=fast_collate)
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226

    if args.evaluate:
        validate(val_loader, model, criterion)
        return

    for epoch in range(args.start_epoch, args.epochs):
        if args.distributed:
            train_sampler.set_epoch(epoch)

        # train for one epoch
        train(train_loader, model, criterion, optimizer, epoch)
        if args.prof:
            break
        # evaluate on validation set
        prec1 = validate(val_loader, model, criterion)

        # remember best prec@1 and save checkpoint
227
        if args.local_rank == 0:
228
229
230
231
232
233
234
235
236
237
238
239
240
241
            is_best = prec1 > best_prec1
            best_prec1 = max(prec1, best_prec1)
            save_checkpoint({
                'epoch': epoch + 1,
                'arch': args.arch,
                'state_dict': model.state_dict(),
                'best_prec1': best_prec1,
                'optimizer' : optimizer.state_dict(),
            }, is_best)

class data_prefetcher():
    def __init__(self, loader):
        self.loader = iter(loader)
        self.stream = torch.cuda.Stream()
Michael Carilli's avatar
Michael Carilli committed
242
243
        self.mean = torch.tensor([0.485 * 255, 0.456 * 255, 0.406 * 255]).cuda().view(1,3,1,1)
        self.std = torch.tensor([0.229 * 255, 0.224 * 255, 0.225 * 255]).cuda().view(1,3,1,1)
244
245
246
247
248
        # With Amp, it isn't necessary to manually convert data to half.
        # Type conversions are done internally on the fly within patched torch functions.
        # if args.fp16:
        #     self.mean = self.mean.half()
        #     self.std = self.std.half()
249
250
251
252
253
254
255
256
257
258
        self.preload()

    def preload(self):
        try:
            self.next_input, self.next_target = next(self.loader)
        except StopIteration:
            self.next_input = None
            self.next_target = None
            return
        with torch.cuda.stream(self.stream):
259
260
            self.next_input = self.next_input.cuda(non_blocking=True)
            self.next_target = self.next_target.cuda(non_blocking=True)
261
262
263
264
265
266
            # With Amp, it isn't necessary to manually convert data to half.
            # Type conversions are done internally on the fly within patched torch functions.
            # if args.fp16:
            #     self.next_input = self.next_input.half()
            # else:
            self.next_input = self.next_input.float()
Michael Carilli's avatar
Michael Carilli committed
267
268
            self.next_input = self.next_input.sub_(self.mean).div_(self.std)
            
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
    def next(self):
        torch.cuda.current_stream().wait_stream(self.stream)
        input = self.next_input
        target = self.next_target
        self.preload()
        return input, target


def train(train_loader, model, criterion, optimizer, epoch):
    batch_time = AverageMeter()
    data_time = AverageMeter()
    losses = AverageMeter()
    top1 = AverageMeter()
    top5 = AverageMeter()

    # switch to train mode
    model.train()
    end = time.time()

    prefetcher = data_prefetcher(train_loader)
    input, target = prefetcher.next()
    i = -1
    while input is not None:
        i += 1

294
295
        adjust_learning_rate(optimizer, epoch, i, len(train_loader))

296
297
298
299
300
301
302
        if args.prof:
            if i > 10:
                break
        # measure data loading time
        data_time.update(time.time() - end)

        # compute output
ptrblck's avatar
ptrblck committed
303
304
        output = model(input)
        loss = criterion(output, target)
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321

        # measure accuracy and record loss
        prec1, prec5 = accuracy(output.data, target, topk=(1, 5))

        if args.distributed:
            reduced_loss = reduce_tensor(loss.data)
            prec1 = reduce_tensor(prec1)
            prec5 = reduce_tensor(prec5)
        else:
            reduced_loss = loss.data

        losses.update(to_python_float(reduced_loss), input.size(0))
        top1.update(to_python_float(prec1), input.size(0))
        top5.update(to_python_float(prec5), input.size(0))

        # compute gradient and do SGD step
        optimizer.zero_grad()
322
323
324
325

        with amp_handle.scale_loss(loss, optimizer) as scaled_loss:
            scaled_loss.backward()

326
327
        optimizer.step()

328
        torch.cuda.synchronize()
329
330
331
332
333
334
        # measure elapsed time
        batch_time.update(time.time() - end)

        end = time.time()
        input, target = prefetcher.next()

335
        if args.local_rank == 0 and i % args.print_freq == 0 and i > 1:
336
337
            print('Epoch: [{0}][{1}/{2}]\t'
                  'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
Michael Carilli's avatar
Michael Carilli committed
338
                  'Speed {3:.3f} ({4:.3f})\t'
339
                  'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
340
                  'Loss {loss.val:.10f} ({loss.avg:.4f})\t'
341
342
                  'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
                  'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
Michael Carilli's avatar
Michael Carilli committed
343
                   epoch, i, len(train_loader),
344
345
                   args.world_size * args.batch_size / batch_time.val,
                   args.world_size * args.batch_size / batch_time.avg,
Michael Carilli's avatar
Michael Carilli committed
346
                   batch_time=batch_time,
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
                   data_time=data_time, loss=losses, top1=top1, top5=top5))


def validate(val_loader, model, criterion):
    batch_time = AverageMeter()
    losses = AverageMeter()
    top1 = AverageMeter()
    top5 = AverageMeter()

    # switch to evaluate mode
    model.eval()

    end = time.time()

    prefetcher = data_prefetcher(val_loader)
    input, target = prefetcher.next()
    i = -1
    while input is not None:
        i += 1

        # compute output
        with torch.no_grad():
ptrblck's avatar
ptrblck committed
369
370
            output = model(input)
            loss = criterion(output, target)
371
372
373
374

        # measure accuracy and record loss
        prec1, prec5 = accuracy(output.data, target, topk=(1, 5))

375
376
377
378
379
380
        if args.distributed:
            reduced_loss = reduce_tensor(loss.data)
            prec1 = reduce_tensor(prec1)
            prec5 = reduce_tensor(prec5)
        else:
            reduced_loss = loss.data
381
382
383
384
385
386
387
388
389

        losses.update(to_python_float(reduced_loss), input.size(0))
        top1.update(to_python_float(prec1), input.size(0))
        top5.update(to_python_float(prec5), input.size(0))

        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()

390
        if args.local_rank == 0 and i % args.print_freq == 0:
391
392
            print('Test: [{0}/{1}]\t'
                  'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
Michael Carilli's avatar
Michael Carilli committed
393
                  'Speed {2:.3f} ({3:.3f})\t'
394
395
396
                  'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
                  'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
                  'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
Michael Carilli's avatar
Michael Carilli committed
397
                   i, len(val_loader),
398
399
                   args.world_size * args.batch_size / batch_time.val,
                   args.world_size * args.batch_size / batch_time.avg,
Michael Carilli's avatar
Michael Carilli committed
400
                   batch_time=batch_time, loss=losses,
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
                   top1=top1, top5=top5))

        input, target = prefetcher.next()

    print(' * Prec@1 {top1.avg:.3f} Prec@5 {top5.avg:.3f}'
          .format(top1=top1, top5=top5))

    return top1.avg


def save_checkpoint(state, is_best, filename='checkpoint.pth.tar'):
    torch.save(state, filename)
    if is_best:
        shutil.copyfile(filename, 'model_best.pth.tar')


class AverageMeter(object):
    """Computes and stores the average and current value"""
    def __init__(self):
        self.reset()

    def reset(self):
        self.val = 0
        self.avg = 0
        self.sum = 0
        self.count = 0

    def update(self, val, n=1):
        self.val = val
        self.sum += val * n
        self.count += n
        self.avg = self.sum / self.count


435
436
437
438
439
440
441
442
443
def adjust_learning_rate(optimizer, epoch, step, len_epoch):
    """LR schedule that should yield 76% converged accuracy with batch size 256"""
    factor = epoch // 30

    if epoch >= 80:
        factor = factor + 1

    lr = args.lr*(0.1**factor)

Michael Carilli's avatar
Michael Carilli committed
444
445
446
    """Warmup"""
    if epoch < 5:
        lr = lr*float(1 + step + epoch*len_epoch)/(5.*len_epoch)
447

Michael Carilli's avatar
Michael Carilli committed
448
449
    # if(args.local_rank == 0):
    #     print("epoch = {}, step = {}, lr = {}".format(epoch, step, lr))
450

451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
    for param_group in optimizer.param_groups:
        param_group['lr'] = lr


def accuracy(output, target, topk=(1,)):
    """Computes the precision@k for the specified values of k"""
    maxk = max(topk)
    batch_size = target.size(0)

    _, pred = output.topk(maxk, 1, True, True)
    pred = pred.t()
    correct = pred.eq(target.view(1, -1).expand_as(pred))

    res = []
    for k in topk:
        correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
        res.append(correct_k.mul_(100.0 / batch_size))
    return res


def reduce_tensor(tensor):
    rt = tensor.clone()
    dist.all_reduce(rt, op=dist.reduce_op.SUM)
474
    rt /= args.world_size
475
476
477
478
    return rt

if __name__ == '__main__':
    main()