amp_C_frontend.cpp 3.66 KB
Newer Older
1
2
3
4
5
6
7
8
#include <torch/extension.h>

void multi_tensor_scale_cuda(
  int chunk_size,
  at::Tensor noop_flag,
  std::vector<std::vector<at::Tensor>> tensor_lists,
  float scale);

Simon Layton's avatar
Simon Layton committed
9
10
11
12
13
14
15
16
17
void multi_tensor_sgd_cuda(
  int chunk_size,
  at::Tensor noop_flag,
  std::vector<std::vector<at::Tensor>> tensor_lists,
  float wd,
  float momentum,
  float dampening,
  float lr,
  bool nesterov,
18
  bool first_run,
19
20
  bool wd_after_momentum,
  float scale);
Simon Layton's avatar
Simon Layton committed
21

22
23
24
25
26
void multi_tensor_axpby_cuda(
  int chunk_size,
  at::Tensor noop_flag,
  std::vector<std::vector<at::Tensor>> tensor_lists,
  float a,
27
28
  float b,
  int arg_to_check);
29

30
std::tuple<at::Tensor, at::Tensor> multi_tensor_l2norm_cuda(
31
32
  int chunk_size,
  at::Tensor noop_flag,
33
34
  std::vector<std::vector<at::Tensor>> tensor_lists,
  at::optional<bool> per_tensor_python);
35

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
void multi_tensor_lamb_stage1_cuda(
    int chunk_size,
    at::Tensor noop_flag,
    std::vector<std::vector<at::Tensor>> tensor_lists,
    at::Tensor per_tensor_decay,
    const int step,
    const float beta1,
    const float beta2,
    const float epsilon,
    const float global_grad_norm,
    const float max_global_grad_norm);

void multi_tensor_lamb_stage2_cuda(
    int chunk_size,
    at::Tensor noop_flag,
    std::vector<std::vector<at::Tensor>> tensor_lists,
    at::Tensor per_tensor_param_norm,
    at::Tensor per_tensor_update_norm,
54
55
    const float lr,
    const float weight_decay,
56
    at::optional<bool> use_nvlamb_python);
57

58
void multi_tensor_adam_cuda(
59
60
61
  int chunk_size,
  at::Tensor noop_flag,
  std::vector<std::vector<at::Tensor>> tensor_lists,
62
  const float lr,
63
64
65
  const float beta1,
  const float beta2,
  const float epsilon,
66
  const int step,
67
  const int mode,
68
69
  const int bias_correction,
  const float weight_decay);
70

71
void multi_tensor_novograd_cuda(
72
73
74
  int chunk_size,
  at::Tensor noop_flag,
  std::vector<std::vector<at::Tensor>> tensor_lists,
75
  at::Tensor grad_norms,
76
77
78
79
80
81
  const float lr,
  const float beta1,
  const float beta2,
  const float epsilon,
  const int step,
  const int bias_correction,
82
83
  const float weight_decay,
  const int grad_averaging,
84
  const int mode,
85
  const int norm_type);
86

87
void multi_tensor_lamb_cuda(
88
89
90
91
92
93
94
95
96
97
98
  int chunk_size,
  at::Tensor noop_flag,
  std::vector<std::vector<at::Tensor>> tensor_lists,
  const float lr,
  const float beta1,
  const float beta2,
  const float epsilon,
  const int step,
  const int bias_correction,
  const float weight_decay,
  const int grad_averaging,
99
  const int mode,
100
101
102
  const float global_grad_norm,
  const float max_grad_norm,
  at::optional<bool> use_nvlamb_python);
103

104
105
106
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
  m.def("multi_tensor_scale", &multi_tensor_scale_cuda,
        "Fused overflow check + scale for a list of contiguous tensors");
Simon Layton's avatar
Simon Layton committed
107
108
  m.def("multi_tensor_sgd", &multi_tensor_sgd_cuda,
        "Fused SGD optimizer for list of contiguous tensors");
109
110
  m.def("multi_tensor_axpby", &multi_tensor_axpby_cuda,
        "out = a*x + b*y for a list of contiguous tensors");
111
112
  m.def("multi_tensor_l2norm", &multi_tensor_l2norm_cuda,
        "Computes L2 norm for a list of contiguous tensors");
113
114
115
116
  m.def("multi_tensor_lamb_stage1_cuda", &multi_tensor_lamb_stage1_cuda,
        "Computes update part of LAMB optimizer");
  m.def("multi_tensor_lamb_stage2_cuda", &multi_tensor_lamb_stage2_cuda,
        "Completes application of gradient to parameters for LAMB optimizer");
117
118
119
120
  m.def("multi_tensor_adam", &multi_tensor_adam_cuda,
        "Compute and apply gradient update to parameters for Adam optimizer");
  m.def("multi_tensor_novograd", &multi_tensor_novograd_cuda,
        "Compute and apply gradient update to parameters for Adam optimizer");
121
122
  m.def("multi_tensor_lamb", &multi_tensor_lamb_cuda,
        "Computes and apply update for LAMB optimizer");
123
}