test_add_param_group.py 6.27 KB
Newer Older
mcarilli's avatar
mcarilli committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
import unittest

import functools as ft
import itertools as it

from apex import amp
from apex.amp import _amp_state
import torch
from torch import nn
import torch.nn.functional as F
from torch.nn import Parameter

from utils import common_init, HALF, FLOAT,\
    ALWAYS_HALF, ALWAYS_FLOAT, MATCH_INPUT

class MyModel(torch.nn.Module):
rohithkrn's avatar
rohithkrn committed
17
    def __init__(self, unique, dtype=torch.float16):
mcarilli's avatar
mcarilli committed
18
19
20
        super(MyModel, self).__init__()
        self.weight0 = Parameter(unique +
            torch.arange(2, device='cuda', dtype=torch.float32))
rohithkrn's avatar
rohithkrn committed
21
        self.weight1 = Parameter(1. + unique + torch.arange(2, device='cuda', dtype=dtype))
mcarilli's avatar
mcarilli committed
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

    @staticmethod
    def ops(input, weight0, weight1):
        return ((input*(weight0.float()))*(weight1.float())).sum()

    def forward(self, input):
        return self.ops(input, self.weight0, self.weight1)


# Abandon all hope, ye who enter here.


class TestAddParamGroup(unittest.TestCase):
    def setUp(self):
        self.x = torch.ones((2), device='cuda', dtype=torch.float32)
        common_init(self)

    def tearDown(self):
        pass

    def zero_grad(self, models, optimizer, how_to_zero):
        if how_to_zero == "none":
            for model in models:
                for param in model.parameters():
                    param.grad = None
        elif how_to_zero == "model":
            for model in models:
                model.zero_grad()
        elif how_to_zero == "optimizer":
            optimizer.zero_grad()

    def test_add_param_group(self):
rohithkrn's avatar
rohithkrn committed
54
        for opt_level in ("O0", "O1", "O2", "O3", "O4", "O5"):
mcarilli's avatar
mcarilli committed
55
56
          for zero_before_add in (True, False):
            for try_accumulation in (True, False):
rohithkrn's avatar
rohithkrn committed
57
58
59
60
61
62
              if opt_level in {"O4", "O5"}:
                model0 = MyModel(1, torch.bfloat16)
                model1 = MyModel(2, torch.bfloat16)
              else:
                model0 = MyModel(1)
                model1 = MyModel(2)
mcarilli's avatar
mcarilli committed
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

              optimizer = torch.optim.SGD([{'params' : model0.parameters(), 'lr' : 0.25}],
                                          momentum=0.125)

              optimizer.zero_grad()
              loss = model0(self.x)
              loss.backward()
              optimizer.step()

              if zero_before_add:
                  optimizer.zero_grad()
              optimizer.add_param_group({'params' : model1.parameters(), 'lr' : 0.5})
              if not zero_before_add:
                  optimizer.zero_grad()

              loss = model0(self.x) + model1(self.x)
              loss.backward(retain_graph=try_accumulation)
              if try_accumulation:
                  loss.backward()
              optimizer.step()

              # Once more to make sure the new params pick up momemtums properly
              optimizer.zero_grad()
              loss = model0(self.x) + model1(self.x)
              loss.backward(retain_graph=try_accumulation)
              if try_accumulation:
                  loss.backward()
              optimizer.step()

              reference_params = [param.data.clone() for param in model0.parameters()] + \
                                 [param.data.clone() for param in model1.parameters()]

              for how_to_zero in "none", "model", "optimizer":
rohithkrn's avatar
rohithkrn committed
96
97
98
99
100
101
                  if opt_level in {"O4", "O5"}:
                      model0 = MyModel(1, torch.bfloat16)
                      model1 = MyModel(2, torch.bfloat16)
                  else:
                      model0 = MyModel(1)
                      model1 = MyModel(2)
mcarilli's avatar
mcarilli committed
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

                  optimizer = torch.optim.SGD([{'params' : model0.parameters(), 'lr' : 0.25}],
                                              momentum=0.125)

                  _amp_state.allow_incoming_model_not_fp32 = True
                  [model0, model1], optimizer = amp.initialize([model0, model1],
                      optimizer,
                      opt_level=opt_level,
                      verbosity=0,
                      cast_model_type=False)
                  _amp_state.allow_incoming_model_not_fp32 = False

                  _amp_state.loss_scalers[0]._loss_scale = 4.0

                  self.zero_grad([model0, model1], optimizer, how_to_zero)
                  loss = model0(self.x)
                  with amp.scale_loss(loss, optimizer) as scaled_loss:
                      scaled_loss.backward()
                  optimizer.step()

                  if zero_before_add:
                      self.zero_grad([model0, model1], optimizer, how_to_zero)
                  optimizer.add_param_group({'params' : model1.parameters(), 'lr' : 0.5})
                  if not zero_before_add:
                      self.zero_grad([model0, model1], optimizer, how_to_zero)

                  loss = model0(self.x) + model1(self.x)
                  with amp.scale_loss(loss, optimizer) as scaled_loss:
                      scaled_loss.backward(retain_graph=try_accumulation)
                  if try_accumulation:
                      with amp.scale_loss(loss, optimizer) as scaled_loss:
                          scaled_loss.backward()
                  optimizer.step()

                  # Once more to make sure the new params pick up momentums properly
                  self.zero_grad([model0, model1], optimizer, how_to_zero)
                  loss = model0(self.x) + model1(self.x)
                  with amp.scale_loss(loss, optimizer) as scaled_loss:
                      scaled_loss.backward(retain_graph=try_accumulation)
                  if try_accumulation:
                      with amp.scale_loss(loss, optimizer) as scaled_loss:
                          scaled_loss.backward()
                  optimizer.step()

                  final_params = [param.data.clone() for param in model0.parameters()] + \
                                 [param.data.clone() for param in model1.parameters()]

                  for reference, final in zip(reference_params, final_params):
rohithkrn's avatar
rohithkrn committed
150
151
152
                      # TODO: remove the conversion once allclose supports bfloat16 type.
                      if final.dtype == torch.bfloat16:
                          final = final.float()
mcarilli's avatar
mcarilli committed
153
154
155
156
157
158
159
                      self.assertTrue(torch.allclose(reference.to(final.dtype), final),
                                      "opt_level = {}, how_to_zero = {}, zero_before_add = {}".format(
                                      opt_level, how_to_zero, zero_before_add))


if __name__ == '__main__':
    unittest.main()