multi_tensor_lamb.cu 12.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
#include <ATen/ATen.h>
#include <ATen/AccumulateType.h>
#include <ATen/cuda/CUDAContext.h>
#include <ATen/cuda/Exceptions.h>
// Another possibility:
// #include <torch/all.h>

#include <assert.h>

#include "type_shim.h"
#include "multi_tensor_apply.cuh"

#define BLOCK_SIZE 512
#define ILP 4

16
17
18
19
20
21
22
23
24
25
26
template<typename T>
__device__ __forceinline__ bool is_aligned(T* p){
  return ((uint64_t)p) % (ILP*sizeof(T)) == 0;
}

template<typename T>
__device__ __forceinline__ void load_store(T* dst, T* src, int dst_offset, int src_offset){
  typedef typename std::aligned_storage<ILP*sizeof(T), ILP*alignof(T)>::type LT;
  ((LT*)dst)[dst_offset] = ((LT*)src)[src_offset];
}

27
typedef enum{
28
29
30
  MOMENT_MODE_0   =0, // L2 regularization mode
  MOMENT_MODE_1   =1  // Decoupled weight decay mode
} adamMode_t;
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

std::tuple<at::Tensor, at::Tensor> multi_tensor_l2norm_cuda(
  int chunk_size,
  at::Tensor noop_flag,
  std::vector<std::vector<at::Tensor>> tensor_lists,
  at::optional<bool> per_tensor_python);

using MATH_T = float;

template<typename T>
struct LAMBStage1Functor
{
   __device__ __forceinline__ void operator()(
    int chunk_size,
    volatile int* noop_gmem,
    TensorListMetadata<4>& tl,
    const float beta1,
    const float beta2,
    const float beta3,
    const float beta1_correction,
    const float beta2_correction,
    const float epsilon,
53
    adamMode_t mode,
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
    const float decay,
    float* global_grad_norm,
    float max_global_grad_norm)
  {
    // I'd like this kernel to propagate infs/nans.
    // if(*noop_gmem == 1)
    //   return;

    int tensor_loc = tl.block_to_tensor[blockIdx.x];
    int chunk_idx = tl.block_to_chunk[blockIdx.x];
    int n = tl.sizes[tensor_loc];

    float clipped_global_grad_norm = (*global_grad_norm) > max_global_grad_norm ? (*global_grad_norm) / max_global_grad_norm : 1.0f;

    T* g = (T*)tl.addresses[0][tensor_loc];
    g += chunk_idx*chunk_size;

    T* p = (T*)tl.addresses[1][tensor_loc];
    p += chunk_idx*chunk_size;

    T* m = (T*)tl.addresses[2][tensor_loc];
    m += chunk_idx*chunk_size;

    T* v = (T*)tl.addresses[3][tensor_loc];
    v += chunk_idx*chunk_size;

    n -= chunk_idx*chunk_size;

82
83
84
85
86
87
88
89
90
91
92
    MATH_T r_g[ILP];
    MATH_T r_p[ILP];
    MATH_T r_m[ILP];
    MATH_T r_v[ILP];
    // to make things simple, we put aligned case in a different code path
    if(n % ILP == 0 &&
       chunk_size % ILP == 0 &&
       is_aligned(g) &&
       is_aligned(p) &&
       is_aligned(m) &&
       is_aligned(v))
93
    {
94
95
96
97
98
      T l_g[ILP];
      T l_p[ILP];
      T l_m[ILP];
      T l_v[ILP];
      for(int i_start = threadIdx.x; i_start*ILP < n && i_start*ILP < chunk_size; i_start += blockDim.x)
99
      {
100
101
102
103
104
105
106
107
108
        // load
        load_store(l_g, g, 0, i_start);
        if (decay != 0)
          load_store(l_p, p, 0, i_start);
        load_store(l_m, m, 0, i_start);
        load_store(l_v, v, 0, i_start);
        // unpack
#pragma unroll
        for(int ii = 0; ii < ILP; ii++)
109
        {
110
          r_g[ii] = l_g[ii];
111
112
113
114
          if (decay == 0) {
            r_p[ii] = MATH_T(0);
          }
          else {
115
            r_p[ii] = l_p[ii];
116
          }
117
118
          r_m[ii] = l_m[ii];
          r_v[ii] = l_v[ii];
119
120
        }
#pragma unroll
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
        for(int ii = 0; ii < ILP; ii++)
        {
          if (mode == MOMENT_MODE_0) {
            MATH_T scaled_grad = r_g[ii] / clipped_global_grad_norm;
            // L2 on scaled grad
            scaled_grad = scaled_grad + decay*r_p[ii];
            r_m[ii] = r_m[ii] * beta1 + beta3 * scaled_grad;
            r_v[ii] = r_v[ii] * beta2 + (1-beta2) * scaled_grad * scaled_grad;
            MATH_T next_m_unbiased = r_m[ii] / beta1_correction;
            MATH_T next_v_unbiased = r_v[ii] / beta2_correction;
            MATH_T denom = sqrtf(next_v_unbiased) + epsilon;
            r_p[ii] = next_m_unbiased / denom;
          }
          else {
            MATH_T scaled_grad = r_g[ii] / clipped_global_grad_norm;
            r_m[ii] = r_m[ii] * beta1 + beta3 * scaled_grad;
            r_v[ii] = r_v[ii] * beta2 + (1-beta2) * scaled_grad * scaled_grad;
            MATH_T next_m_unbiased = r_m[ii] / beta1_correction;
            MATH_T next_v_unbiased = r_v[ii] / beta2_correction;
            MATH_T denom = sqrtf(next_v_unbiased) + epsilon;
            r_p[ii] = (next_m_unbiased/denom) + (decay*r_p[ii]);
          }
143
        }
144
145
146
147
148
149
#pragma unroll
        for(int ii = 0; ii < ILP; ii++)
        {
          l_p[ii] = r_p[ii];
          l_m[ii] = r_m[ii];
          l_v[ii] = r_v[ii];
150
        }
151
152
153
154
        // store
        load_store(g, l_p, i_start, 0);
        load_store(m, l_m, i_start, 0);
        load_store(v, l_v, i_start, 0);
155
      }
156
157
158
159
160
161
162
    }
    else
    {
      // see note in multi_tensor_scale_kernel.cu
      for(int i_start = 0;
          i_start < n && i_start < chunk_size;
          i_start += blockDim.x*ILP)
163
      {
164
165
166
167
168
169
        MATH_T r_g[ILP];
        MATH_T r_p[ILP];
        MATH_T r_m[ILP];
        MATH_T r_v[ILP];
#pragma unroll
        for(int ii = 0; ii < ILP; ii++)
170
        {
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
          int i = i_start + threadIdx.x + ii*blockDim.x;
          if(i < n && i < chunk_size)
          {
            r_g[ii] = g[i];
            // special ?optimization? for lamb stage 1
            if (decay == 0) {
              r_p[ii] = MATH_T(0);
            }
            else {
              r_p[ii] = p[i];
            }
            r_m[ii] = m[i];
            r_v[ii] = v[i];
          } else {
            r_g[ii] = MATH_T(0);
            r_p[ii] = MATH_T(0);
            r_m[ii] = MATH_T(0);
            r_v[ii] = MATH_T(0);
          }
        }
#pragma unroll
        for(int ii = 0; ii < ILP; ii++)
        {
          if (mode == MOMENT_MODE_0) {
            MATH_T scaled_grad = r_g[ii] / clipped_global_grad_norm;
            // L2 on scaled grad
            scaled_grad = scaled_grad + decay*r_p[ii];
            r_m[ii] = r_m[ii] * beta1 + beta3 * scaled_grad;
            r_v[ii] = r_v[ii] * beta2 + (1-beta2) * scaled_grad * scaled_grad;
            MATH_T next_m_unbiased = r_m[ii] / beta1_correction;
            MATH_T next_v_unbiased = r_v[ii] / beta2_correction;
            MATH_T denom = sqrtf(next_v_unbiased) + epsilon;
            r_p[ii] = next_m_unbiased / denom;
          }
          else {
            MATH_T scaled_grad = r_g[ii] / clipped_global_grad_norm;
            r_m[ii] = r_m[ii] * beta1 + beta3 * scaled_grad;
            r_v[ii] = r_v[ii] * beta2 + (1-beta2) * scaled_grad * scaled_grad;
            MATH_T next_m_unbiased = r_m[ii] / beta1_correction;
            MATH_T next_v_unbiased = r_v[ii] / beta2_correction;
            MATH_T denom = sqrtf(next_v_unbiased) + epsilon;
            r_p[ii] = (next_m_unbiased/denom) + (decay*r_p[ii]);
          }
        }
#pragma unroll
        for(int ii = 0; ii < ILP; ii++)
        {
          int i = i_start + threadIdx.x + ii*blockDim.x;
          if(i < n && i < chunk_size)
          {
            g[i] = r_p[ii];
            m[i] = r_m[ii];
            v[i] = r_v[ii];
          }
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
        }
      }
    }
  }
};

// Step 2 reads in 'update' value and per-tensor param_norm and update_norm.
// It computes new parameter value.
template<typename T>
struct LAMBStage2Functor
{
   __device__ __forceinline__ void operator()(
    int chunk_size,
    volatile int* noop_gmem,
    TensorListMetadata<2>& tl,
    const float* per_tensor_param_norm,
    const float* per_tensor_update_norm,
    const float learning_rate)
  {
    // I'd like this kernel to propagate infs/nans.
    // if(*noop_gmem == 1)
    //   return;

    int tensor_loc = tl.block_to_tensor[blockIdx.x];
    int tensor_num = tl.start_tensor_this_launch + tensor_loc;
    int chunk_idx = tl.block_to_chunk[blockIdx.x];
    int n = tl.sizes[tensor_loc];

    float param_norm = per_tensor_param_norm[tensor_num];
    float update_norm = per_tensor_update_norm[tensor_num];
    MATH_T ratio = (update_norm != 0.0f && param_norm != 0.0f) ? learning_rate * (param_norm / update_norm) : learning_rate;

    T* update = (T*)tl.addresses[0][tensor_loc];
    update += chunk_idx*chunk_size;

    T* p = (T*)tl.addresses[1][tensor_loc];
    p += chunk_idx*chunk_size;

    n -= chunk_idx*chunk_size;

265
266
267
268
269
    // to make things simple, we put aligned case in a different code path
    if(n % ILP == 0 &&
       chunk_size % ILP == 0 &&
       is_aligned(p) &&
       is_aligned(update))
270
    {
271
272
273
      T r_p[ILP];
      T r_update[ILP];
      for(int i_start = threadIdx.x; i_start*ILP < n && i_start*ILP < chunk_size; i_start += blockDim.x)
274
      {
275
276
277
278
279
        // load
        load_store(r_p, p, 0, i_start);
        load_store(r_update, update, 0, i_start);
#pragma unroll
        for(int ii = 0; ii < ILP; ii++)
280
        {
281
          r_p[ii] = static_cast<MATH_T>(r_p[ii]) - (ratio * static_cast<MATH_T>(r_update[ii]));
282
        }
283
        load_store(p, r_p, i_start, 0);
284
      }
285
286
287
288
289
290
    }
    else
    {
      for(int i_start = 0;
          i_start < n && i_start < chunk_size;
          i_start += blockDim.x*ILP)
291
      {
292
293
        MATH_T r_p[ILP];
        MATH_T r_update[ILP];
294
#pragma unroll
295
        for(int ii = 0; ii < ILP; ii++)
296
        {
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
          int i = i_start + threadIdx.x + ii*blockDim.x;
          if(i < n && i < chunk_size)
          {
            r_p[ii] = p[i];
            r_update[ii] = update[i];
          }
        }
#pragma unroll
        for(int ii = 0; ii < ILP; ii++)
        {
          r_p[ii] = r_p[ii] - (ratio * r_update[ii]);
        }
#pragma unroll
        for(int ii = 0; ii < ILP; ii++)
        {
          int i = i_start + threadIdx.x + ii*blockDim.x;
          if(i < n && i < chunk_size)
          {
            p[i] = r_p[ii];
          }
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
        }
      }
    }
  }
};


void multi_tensor_lamb_cuda(
  int chunk_size,
  at::Tensor noop_flag,
  std::vector<std::vector<at::Tensor>> tensor_lists,
  const float lr,
  const float beta1,
  const float beta2,
  const float epsilon,
  const int step,
  const int bias_correction,
  const float weight_decay,
  const int grad_averaging,
336
  const int mode,
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
  const float max_grad_norm)
{
  using namespace at;
  // Master weight and 32bit momentum(potentially changing) is not handled by this
  // So we assume every tensor are all in the same type

  // Handle bias correction mode
  float bias_correction1 = 1.0f, bias_correction2 = 1.0f;
  if (bias_correction == 1) {
    bias_correction1 = 1 - std::pow(beta1, step);
    bias_correction2 = 1 - std::pow(beta2, step);
  }

  // Handle grad averaging mode
  float beta3 = 1.0f;
  if (grad_averaging == 1) beta3 = 1 - beta1;

  std::vector<std::vector<at::Tensor>> grad_list(tensor_lists.begin(), tensor_lists.begin()+1);
  std::vector<std::vector<at::Tensor>> param_list(tensor_lists.begin()+1, tensor_lists.begin()+2);

  // Compute global grad norm
  auto grad_norm_tuple = multi_tensor_l2norm_cuda(chunk_size, noop_flag, grad_list, false);

  // Compute per tensor param norm
  auto param_norm_tuple = multi_tensor_l2norm_cuda(chunk_size, noop_flag, param_list, true);

  // We now in-place modify grad to store update before compute its norm
  // Generally this is not a issue since people modify grad in step() method all the time
  // We can also grab list of empty tensor to avoid this, but I'd like to save space/cpu code
366
  DISPATCH_FLOAT_AND_HALF_AND_BFLOAT16(tensor_lists[0][0].scalar_type(), 0, "lamb_stage_1",
367
368
369
370
371
372
373
374
375
376
377
378
      multi_tensor_apply<4>(
        BLOCK_SIZE,
        chunk_size,
        noop_flag,
        tensor_lists,
        LAMBStage1Functor<scalar_t_0>(),
        beta1,
        beta2,
        beta3, // 1-beta1 or 1 depends on averaging mode
        bias_correction1,
        bias_correction2,
        epsilon,
379
        (adamMode_t) mode,
380
        weight_decay,
mcarilli's avatar
mcarilli committed
381
        std::get<0>(grad_norm_tuple).DATA_PTR<float>(),
382
383
384
385
386
387
388
        max_grad_norm); )

  // Compute update norms
  auto update_norm_tuple = multi_tensor_l2norm_cuda(chunk_size, noop_flag, grad_list, true);

  std::vector<std::vector<at::Tensor>> grad_param_list(tensor_lists.begin(), tensor_lists.begin()+2);

389
  DISPATCH_FLOAT_AND_HALF_AND_BFLOAT16(tensor_lists[0][0].scalar_type(), 0, "lamb_stage_2",
390
391
392
393
394
395
      multi_tensor_apply<2>(
        BLOCK_SIZE,
        chunk_size,
       	noop_flag,
        grad_param_list,
        LAMBStage2Functor<scalar_t_0>(),
mcarilli's avatar
mcarilli committed
396
397
        std::get<1>(param_norm_tuple).DATA_PTR<float>(),
        std::get<1>(update_norm_tuple).DATA_PTR<float>(),
398
399
400
401
402
        lr); )

  AT_CUDA_CHECK(cudaGetLastError());

}