main.py 7.03 KB
Newer Older
Christian Sarofeen's avatar
Christian Sarofeen committed
1
2
from __future__ import print_function
import argparse
3
import os
Christian Sarofeen's avatar
Christian Sarofeen committed
4
5
6
7
8
9
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.autograd import Variable
Michael Carilli's avatar
Michael Carilli committed
10
from apex.fp16_utils import to_python_float
Christian Sarofeen's avatar
Christian Sarofeen committed
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

#=====START: ADDED FOR DISTRIBUTED======
'''Add custom module for distributed'''

try:
    from apex.parallel import DistributedDataParallel as DDP
except ImportError:
    raise ImportError("Please install apex from https://www.github.com/nvidia/apex to run this example.")

'''Import distributed data loader'''
import torch.utils.data
import torch.utils.data.distributed

'''Import torch.distributed'''
import torch.distributed as dist

#=====END:   ADDED FOR DISTRIBUTED======

# Training settings
parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
parser.add_argument('--batch-size', type=int, default=64, metavar='N',
                    help='input batch size for training (default: 64)')
parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',
                    help='input batch size for testing (default: 1000)')
parser.add_argument('--epochs', type=int, default=10, metavar='N',
                    help='number of epochs to train (default: 10)')
parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
                    help='learning rate (default: 0.01)')
parser.add_argument('--momentum', type=float, default=0.5, metavar='M',
                    help='SGD momentum (default: 0.5)')
parser.add_argument('--no-cuda', action='store_true', default=False,
                    help='disables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S',
                    help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=10, metavar='N',
                    help='how many batches to wait before logging training status')

#======START: ADDED FOR DISTRIBUTED======
'''
Add some distributed options. For explanation of dist-url and dist-backend please see
http://pytorch.org/tutorials/intermediate/dist_tuto.html

53
--local_rank will be supplied by the Pytorch launcher wrapper (torch.distributed.launch)
Christian Sarofeen's avatar
Christian Sarofeen committed
54
'''
55
parser.add_argument("--local_rank", default=0, type=int)
Christian Sarofeen's avatar
Christian Sarofeen committed
56
57
58
59
60
61
62
63

#=====END:   ADDED FOR DISTRIBUTED======

args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()

#======START: ADDED FOR DISTRIBUTED======
'''Add a convenience flag to see if we are running distributed'''
64
65
66
args.distributed = False
if 'WORLD_SIZE' in os.environ:
    args.distributed = int(os.environ['WORLD_SIZE']) > 1
Christian Sarofeen's avatar
Christian Sarofeen committed
67
68

if args.distributed:
69
    '''Check that we are running with cuda, as distributed is only supported for cuda.'''
Christian Sarofeen's avatar
Christian Sarofeen committed
70
71
72
73
74
75
    assert args.cuda, "Distributed mode requires running with CUDA."

    '''
    Set cuda device so everything is done on the right GPU.
    THIS MUST BE DONE AS SOON AS POSSIBLE.
    '''
76
    torch.cuda.set_device(args.local_rank)
Christian Sarofeen's avatar
Christian Sarofeen committed
77
78

    '''Initialize distributed communication'''
79
80
    torch.distributed.init_process_group(backend='nccl',
                                         init_method='env://')
Christian Sarofeen's avatar
Christian Sarofeen committed
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

#=====END:   ADDED FOR DISTRIBUTED======

torch.manual_seed(args.seed)
if args.cuda:
    torch.cuda.manual_seed(args.seed)


kwargs = {'num_workers': 1, 'pin_memory': True} if args.cuda else {}

#=====START: ADDED FOR DISTRIBUTED======
'''
Change sampler to distributed if running distributed.
Shuffle data loader only if distributed.
'''
train_dataset = datasets.MNIST('../data', train=True, download=True,
                               transform=transforms.Compose([
                                   transforms.ToTensor(),
                                   transforms.Normalize((0.1307,), (0.3081,))
                               ]))

if args.distributed:
    train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
else:
    train_sampler = None

train_loader = torch.utils.data.DataLoader(
    train_dataset, sampler=train_sampler,
    batch_size=args.batch_size, shuffle=(train_sampler is None), **kwargs
)

#=====END:   ADDED FOR DISTRIBUTED======

test_loader = torch.utils.data.DataLoader(
    datasets.MNIST('../data', train=False, transform=transforms.Compose([
                       transforms.ToTensor(),
                       transforms.Normalize((0.1307,), (0.3081,))
                   ])),
    batch_size=args.test_batch_size, shuffle=True, **kwargs)


class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
        self.conv2_drop = nn.Dropout2d()
        self.fc1 = nn.Linear(320, 50)
        self.fc2 = nn.Linear(50, 10)

    def forward(self, x):
        x = F.relu(F.max_pool2d(self.conv1(x), 2))
        x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
        x = x.view(-1, 320)
        x = F.relu(self.fc1(x))
        x = F.dropout(x, training=self.training)
        x = self.fc2(x)
138
        return F.log_softmax(x, dim=1)
Christian Sarofeen's avatar
Christian Sarofeen committed
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166

model = Net()
if args.cuda:
    model.cuda()

#=====START: ADDED FOR DISTRIBUTED======
'''
Wrap model in our version of DistributedDataParallel.
This must be done AFTER the model is converted to cuda.
'''

if args.distributed:
    model = DDP(model)
#=====END:   ADDED FOR DISTRIBUTED======

optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum)

def train(epoch):
    model.train()
    for batch_idx, (data, target) in enumerate(train_loader):
        if args.cuda:
            data, target = data.cuda(), target.cuda()
        data, target = Variable(data), Variable(target)
        optimizer.zero_grad()
        output = model(data)
        loss = F.nll_loss(output, target)
        loss.backward()
        optimizer.step()
167
        if batch_idx % args.log_interval == 0 and args.local_rank == 0:
Christian Sarofeen's avatar
Christian Sarofeen committed
168
169
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, batch_idx * len(data), len(train_loader.dataset),
Michael Carilli's avatar
Michael Carilli committed
170
                100. * batch_idx / len(train_loader), to_python_float(loss.data)))
Christian Sarofeen's avatar
Christian Sarofeen committed
171
172
173
174
175

def test():
    model.eval()
    test_loss = 0
    correct = 0
Michael Carilli's avatar
Michael Carilli committed
176
177
178
179
180
181
182
183
184
    for data, target in test_loader: 
        with torch.no_grad():
            if args.cuda:
                data, target = data.cuda(), target.cuda()
            data, target = Variable(data), Variable(target)
            output = model(data)
            test_loss += to_python_float(F.nll_loss(output, target, size_average=False).data) # sum up batch loss
            pred = output.data.max(1, keepdim=True)[1] # get the index of the max log-probability
            correct += pred.eq(target.data.view_as(pred)).cpu().sum()
Christian Sarofeen's avatar
Christian Sarofeen committed
185
186

    test_loss /= len(test_loader.dataset)
187

Christian Sarofeen's avatar
Christian Sarofeen committed
188
189
190
191
192
193
    print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
        test_loss, correct, len(test_loader.dataset),
        100. * correct / len(test_loader.dataset)))


for epoch in range(1, args.epochs + 1):
194
    #=====START: ADDED FOR DISTRIBUTED======
195
196
    if args.distributed:
        train_sampler.set_epoch(epoch)
197
198
    #=====END:   ADDED FOR DISTRIBUTED======

Christian Sarofeen's avatar
Christian Sarofeen committed
199
    train(epoch)
200
201
    if args.local_rank == 0:
        test()