two_gpu_unit_test.py 6.11 KB
Newer Older
jjsjann123's avatar
jjsjann123 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import torch
import numpy as np
import apex
import syncbn
import os
import argparse
import torch.optim as optim

def compare(desc, inp1, inp2, error):
    a = inp1.clone().detach().cpu().numpy()
    b = inp2.clone().detach().cpu().numpy()
    close = np.allclose(a,b, error, error)
    if not close:
        print(desc, close)
        z = a - b
        index = (np.abs(z) >= error + error * np.abs(b)).nonzero()
        print("dif    : ", z[index])
        print("inp1   : ", a[index])
        print("inp2   : ", b[index])
    return close

feature_size = 10
space_size = 40
batch_size = 32


from apex.parallel import DistributedDataParallel as DDP
parser = argparse.ArgumentParser()
parser.add_argument("--local_rank", default=0, type=int)
parser.add_argument("--fp16", action='store_true', default=False)
parser.add_argument("--fp64", action='store_true', default=False)
args = parser.parse_args()
args.world_size = int(os.environ['WORLD_SIZE'])
torch.cuda.set_device(args.local_rank)
torch.distributed.init_process_group(backend='nccl', init_method='env://')
start = args.local_rank * batch_size//args.world_size
finish = (args.local_rank + 1) * batch_size//args.world_size

error = 1e-5
dtype = np.float32
if args.fp16:
    error = 1e-3
    dtype = np.float16
elif args.fp64:
    error = 1e-8
    dtype = np.float64

np.random.seed(18)
inp = np.random.randn(batch_size, feature_size, space_size, space_size).astype(dtype)
grad = np.random.randn(batch_size, feature_size, space_size, space_size).astype(dtype)
weight = np.random.randn(feature_size).astype(dtype)
bias = np.random.randn(feature_size).astype(dtype)


type_tensor = torch.cuda.FloatTensor
if args.fp16:
    type_tensor = torch.cuda.HalfTensor
if args.fp64:
    type_tensor = torch.cuda.DoubleTensor

ref_tensor = torch.cuda.DoubleTensor

inp_t = type_tensor(inp)
weight_t = type_tensor(weight)
bias_t = type_tensor(bias)

inp_r = ref_tensor(inp.transpose(1, 0, 2, 3).reshape(feature_size, -1))
inp2_r = ref_tensor(inp)
weight_r = ref_tensor(weight).view(-1, 1, 1)
bias_r = ref_tensor(bias).view(-1, 1, 1)

grad_output_t = type_tensor(grad)

m = inp_r.mean(1)
b_v = inp_r.var(1, unbiased=False)
unb_v = inp_r.var(1, unbiased=True)

Jie's avatar
Jie committed
78
79
80
81
eps = 1e-5

mean, var_biased = syncbn.welford_mean_var(inp_t)
inv_std = 1.0 / torch.sqrt(var_biased + eps)
jjsjann123's avatar
jjsjann123 committed
82
83
84
85
86
87
88
89
90
91
92
93
94

bn = torch.nn.BatchNorm2d(feature_size).cuda()
bn.momentum = 1.0
bn.weight.data = weight_t.clone()
bn.bias.data = bias_t.clone()
if args.fp16:
    bn.half()
if args.fp64:
    bn.double()
inp_bn = inp_t.clone().requires_grad_()
grad_bn = grad_output_t.clone().detach()
out_bn = bn(inp_bn)
out_bn.backward(grad_bn)
95
# compensating the averaging over processes done by DDP
mcarilli's avatar
mcarilli committed
96
# in order to produce mathematically equivalent result
mcarilli's avatar
mcarilli committed
97
# https://github.com/NVIDIA/apex/issues/134#issuecomment-458307368
jiej's avatar
jiej committed
98
99
for param in bn.parameters():
    param.grad = param.grad / args.world_size
jjsjann123's avatar
jjsjann123 committed
100
101
102
103
104
105
106
107
108
109
110
bn_opt = optim.SGD(bn.parameters(), lr=1.0)

sbn = apex.parallel.SyncBatchNorm(feature_size).cuda()
sbn.momentum = 1.0
sbn.weight.data = weight_t.clone()
sbn.bias.data = bias_t.clone()
if args.fp16:
    sbn.half()
if args.fp64:
    sbn.double()
sbn = DDP(sbn)
jiej's avatar
jiej committed
111
sbn_opt = optim.SGD(sbn.parameters(), lr=1.0)
jjsjann123's avatar
jjsjann123 committed
112
113
114
115
116
117
118
119
120
121
122
123
inp_sbn = inp_t.clone().requires_grad_()
grad_sbn = grad_output_t.clone().detach()
out_sbn = sbn(inp_sbn[start:finish])
out_sbn.backward(grad_sbn[start:finish])

sbn_result = True
bn_result = True

if args.local_rank == 0:
    sbn_result = compare("comparing mean: ", mean, m, error) and sbn_result
    sbn_result = compare("comparing biased variance: ", var_biased, b_v, error) and sbn_result

Jie's avatar
Jie committed
124
out = syncbn.batchnorm_forward(inp_t, mean, inv_std, weight_t, bias_t)
jjsjann123's avatar
jjsjann123 committed
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
out_r = weight_r * (inp2_r - m.view(-1, 1, 1)) * torch.rsqrt(b_v.view(-1,1,1) + eps) + bias_r

if args.local_rank == 0:
    sbn_result = compare("comparing output: ", out, out_r, error) and sbn_result
    compare("comparing bn output: ", out_bn, out_r, error)

grad_output_t = type_tensor(grad)

grad_output_r = ref_tensor(grad.transpose(1, 0, 2, 3).reshape(feature_size, -1))
grad_output2_r = ref_tensor(grad)

grad_bias_r = grad_output_r.sum(1)
grad_weight_r = ((inp2_r - m.view(-1, 1, 1)) * torch.rsqrt(b_v.view(-1,1,1) + eps) * grad_output2_r).transpose(1,0).contiguous().view(feature_size, -1).sum(1)

mean_dy_r = grad_output_r.mean(1)
mean_dy_xmu_r = ((inp2_r - m.view(-1, 1, 1)) * grad_output2_r).transpose(1,0).contiguous().view(feature_size, -1).mean(1)

grad_input_r = (grad_output2_r - mean_dy_r.view(-1, 1, 1) - (inp2_r - m.view(-1, 1, 1)) / (b_v.view(-1,1,1) + eps) * mean_dy_xmu_r.view(-1, 1, 1) ) * torch.rsqrt(b_v.view(-1,1,1) + eps) * weight_r.view(-1,1,1)

Jie's avatar
Jie committed
144
145
mean_dy, mean_dy_xmu, grad_weight, grad_bias = syncbn.reduce_bn(grad_output_t, inp_t, mean, inv_std, weight_t)
grad_input = syncbn.batchnorm_backward(grad_output_t, inp_t, mean, inv_std, weight_t, mean_dy, mean_dy_xmu)
jjsjann123's avatar
jjsjann123 committed
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
if args.local_rank == 0:
    sbn_result = compare("comparing bias grad: ", grad_bias, grad_bias_r, error) and sbn_result
    sbn_result = compare("comparing weight grad: ", grad_weight, grad_weight_r, error) and sbn_result
    sbn_result = compare("comparing mean_dy grad: ", mean_dy, mean_dy_r, error) and sbn_result
    sbn_result = compare("comparing mean_dy_xmu grad: ", mean_dy_xmu, mean_dy_xmu_r, error) and sbn_result
    sbn_result = compare("comparing input grad: ", grad_input, grad_input_r, error) and sbn_result
    compare("comparing bn input grad: ", inp_bn.grad, grad_input_r, error)

if args.local_rank == 0:
    sbn_result = compare("comparing running_mean: ", bn.running_mean.data, sbn.module.running_mean.data, error) and sbn_result
    sbn_result = compare("comparing running_variance: ", bn.running_var.data, sbn.module.running_var.data, error) and sbn_result

# execute by both
compare("comparing layers output: ", out_bn[start:finish], out_sbn, error) and sbn_result
compare("comparing layers grad_input: ", inp_bn.grad[start:finish], inp_sbn.grad[start:finish], error) and sbn_result

bn_opt.step()
sbn_opt.step()

if args.local_rank == 0:
    compare("comparing bn vs sbn bias: ", bn.bias, sbn.module.bias, error)
    compare("comparing bn vs sbn weight: ", bn.weight, sbn.module.weight, error)


if sbn_result:
    print("====SBN two gpu passed tests")
else:
    print("*SBN two gpu failed*")