layer_norm_cuda.cpp 6.39 KB
Newer Older
1
2
3
4
5
6
7
#include <torch/extension.h>
#include <vector>
#include <cassert>

namespace {
void compute_n1_n2(
    at::Tensor input,
8
    #ifdef VERSION_GE_1_1
9
    at::IntArrayRef normalized_shape,
10
11
12
    #else
    at::IntList normalized_shape,
    #endif
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
    int& n1,
    int& n2)
{
    int idiff = input.ndimension() - normalized_shape.size();
    n2 = 1;
    for (int i = 0;  i < (int)normalized_shape.size();  ++i) {
	    assert( input.sizes()[i+idiff] == normalized_shape[i] );
	    n2 *= normalized_shape[i];
    }
    n1 = 1;
    for (int i = 0;  i < idiff;  ++i) {
	    n1 *= input.sizes()[i];
    }
}

void check_args(
29
    #ifdef VERSION_GE_1_1
30
    at::IntArrayRef normalized_shape,
31
32
33
    #else
    at::IntList normalized_shape,
    #endif
34
35
36
37
38
39
40
41
42
43
    at::Tensor gamma,
    at::Tensor beta
    )
{
    AT_CHECK(!gamma.defined() || gamma.sizes().equals(normalized_shape));
    AT_CHECK(!beta.defined() || beta.sizes().equals(normalized_shape));
}

void check_args(
    at::Tensor input,
44
    #ifdef VERSION_GE_1_1
45
    at::IntArrayRef normalized_shape,
46
47
48
    #else
    at::IntList normalized_shape,
    #endif
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
    int& n1,
    int& n2
    )
{
    int64_t normalized_ndim = normalized_shape.size();

    if (normalized_ndim < 1) {
      std::stringstream ss;
      ss << "Expected normalized_shape to be at least 1-dimensional, i.e., "
         << "containing at least one element, but got normalized_shape="
         << normalized_shape;
      throw std::runtime_error(ss.str());
    }

    auto input_shape = input.sizes();
    auto input_ndim = input.dim();

    if (input_ndim < normalized_ndim ||
        !input_shape.slice(input_ndim - normalized_ndim).equals(normalized_shape)) {
      std::stringstream ss;
      ss << "Given normalized_shape=" << normalized_shape
         << ", expected input with shape [*";
      for (auto size : normalized_shape) {
        ss << ", " << size;
      }
      ss << "], but got input of size" << input_shape;
      throw std::runtime_error(ss.str());
    }

    compute_n1_n2(input,normalized_shape,n1,n2);
}


void check_args(
    at::Tensor input,
84
    #ifdef VERSION_GE_1_1
85
    at::IntArrayRef normalized_shape,
86
87
88
    #else
    at::IntList normalized_shape,
    #endif
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
    at::Tensor gamma,
    at::Tensor beta,
    int& n1,
    int& n2
    )
{
    check_args(input,normalized_shape,n1,n2);
    check_args(normalized_shape,gamma,beta);
}
}

void cuda_layer_norm(
    at::Tensor* output,
    at::Tensor* mean,
    at::Tensor* invvar,
    at::Tensor* input,
    int n1,
    int n2,
107
    #ifdef VERSION_GE_1_1
108
    at::IntArrayRef normalized_shape,
109
110
111
    #else
    at::IntList normalized_shape,
    #endif
112
113
114
115
116
117
118
119
120
121
    at::Tensor* gamma,
    at::Tensor* beta,
    double epsilon);

#define CHECK_CUDA(x) AT_CHECK(x.type().is_cuda(), #x " must be a CUDA tensor")
#define CHECK_CONTIGUOUS(x) AT_CHECK(x.is_contiguous(), #x " must be contiguous")
#define CHECK_INPUT(x) CHECK_CUDA(x); CHECK_CONTIGUOUS(x)

std::vector<at::Tensor> layer_norm(
    at::Tensor input,
122
    #ifdef VERSION_GE_1_1
123
    at::IntArrayRef normalized_shape,
124
125
126
    #else
    at::IntList normalized_shape,
    #endif
127
128
129
130
131
    double epsilon) {
  CHECK_INPUT(input);
  int n1,n2;
  check_args(input,normalized_shape,n1,n2);
  at::Tensor output = at::empty_like(input);
132
  at::Tensor mean = at::empty({n1}, input.options().dtype(input.scalar_type()==at::ScalarType::Half ? at::ScalarType::Float : input.scalar_type()));
133
134
135
136
137
138
139
  at::Tensor invvar = at::empty_like(mean);
  cuda_layer_norm(&output,&mean,&invvar,&input,n1,n2,
      normalized_shape,NULL,NULL,epsilon);
  return {output, mean, invvar};
}
std::vector<at::Tensor> layer_norm_affine(
    at::Tensor input,
140
    #ifdef VERSION_GE_1_1
141
    at::IntArrayRef normalized_shape,
142
143
144
    #else
    at::IntList normalized_shape,
    #endif
145
146
147
148
149
150
151
152
153
    at::Tensor gamma,
    at::Tensor beta,
    double epsilon) {
  CHECK_INPUT(input);
  CHECK_INPUT(gamma);
  CHECK_INPUT(beta);
  int n1,n2;
  check_args(input,normalized_shape,gamma,beta,n1,n2);
  at::Tensor output = at::empty_like(input);
154
  at::Tensor mean = at::empty({n1}, input.options().dtype(input.scalar_type()==at::ScalarType::Half ? at::ScalarType::Float : input.scalar_type()));
155
156
157
158
159
160
161
162
163
164
165
166
167
  at::Tensor invvar = at::empty_like(mean);
  cuda_layer_norm(&output,&mean,&invvar,&input,n1,n2,
      normalized_shape,&gamma,&beta,epsilon);
  return {output, mean, invvar};
}

void cuda_layer_norm_gradient(
    at::Tensor* dout,
    at::Tensor* mean,
    at::Tensor* invvar,
    at::Tensor* input,
    int n1,
    int n2,
168
    #ifdef VERSION_GE_1_1
169
    at::IntArrayRef normalized_shape,
170
171
172
    #else
    at::IntList normalized_shape,
    #endif
173
174
175
176
177
178
179
180
181
182
183
184
185
    at::Tensor* gamma,
    at::Tensor* beta,
    double epsilon,
    at::Tensor* grad_input,
    at::Tensor* grad_gamma,
    at::Tensor* grad_beta
    );

at::Tensor layer_norm_gradient(
    at::Tensor dout,
    at::Tensor mean,
    at::Tensor invvar,
    at::Tensor input,
186
    #ifdef VERSION_GE_1_1
187
    at::IntArrayRef normalized_shape,
188
189
190
    #else
    at::IntList normalized_shape,
    #endif
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
    double epsilon) {
  CHECK_INPUT(dout);
  CHECK_INPUT(mean);
  CHECK_INPUT(invvar);
  CHECK_INPUT(input);
  int n1,n2;
  check_args(input,normalized_shape,n1,n2);
  at::Tensor grad_input = at::empty_like(input);
  cuda_layer_norm_gradient(&dout,&mean,&invvar,&input,n1,n2,
      normalized_shape,NULL,NULL,epsilon,
      &grad_input,NULL,NULL);
  return grad_input;
}
std::vector<at::Tensor> layer_norm_gradient_affine(
    at::Tensor dout,
    at::Tensor mean,
    at::Tensor invvar,
    at::Tensor input,
209
    #ifdef VERSION_GE_1_1
210
    at::IntArrayRef normalized_shape,
211
212
213
    #else
    at::IntList normalized_shape,
    #endif
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
    at::Tensor gamma,
    at::Tensor beta,
    double epsilon) {
  CHECK_INPUT(dout);
  CHECK_INPUT(mean);
  CHECK_INPUT(invvar);
  CHECK_INPUT(input);
  CHECK_INPUT(gamma);
  CHECK_INPUT(beta);
  int n1,n2;
  check_args(input,normalized_shape,gamma,beta,n1,n2);
  at::Tensor grad_input = at::empty_like(input);
  at::Tensor grad_gamma = at::empty_like(gamma);
  at::Tensor grad_beta = at::empty_like(beta);
  cuda_layer_norm_gradient(&dout,&mean,&invvar,&input,n1,n2,
      normalized_shape,&gamma,&beta,epsilon,
      &grad_input,&grad_gamma,&grad_beta);
  return {grad_input, grad_gamma, grad_beta};
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
  m.def("forward_affine", &layer_norm_affine, "LayerNorm forward (CUDA)");
  m.def("forward", &layer_norm, "LayerNorm forward (CUDA)");
  m.def("backward_affine", &layer_norm_gradient_affine, "LayerNorm backward (CUDA)");
  m.def("backward", &layer_norm_gradient, "LayerNorm backward (CUDA)");
}