mlp_cuda.cu 23.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
#include <ATen/ATen.h>
#include <ATen/cuda/CUDAContext.h>
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <torch/torch.h>

/* Includes, cuda */
#include <cublas_v2.h>
#include <cuda_runtime.h>

#define BIASADDRELU_FPROP_NUM_THREADS 128
#define BIASADDRELU_BPROP_NUM_THREADS 128

// move to a header later on
#define ILP 4
template<typename T>
__host__ __device__ __forceinline__ bool is_aligned(T* p){
  return ((uint64_t)p) % (ILP*sizeof(T)) == 0;
}

template<typename T>
__device__ __forceinline__ void load_store(T* dst, T* src, int dst_offset, int src_offset){
  typedef typename std::aligned_storage<ILP*sizeof(T), ILP*alignof(T)>::type LT;
  ((LT*)dst)[dst_offset] = ((LT*)src)[src_offset];
}
template<typename T>
__device__ __forceinline__ void load_store(T* dst, volatile T* src, int dst_offset, int src_offset){
  typedef typename std::aligned_storage<ILP*sizeof(T), ILP*alignof(T)>::type LT;
  ((LT*)dst)[dst_offset] = ((LT*)src)[src_offset];
}
template<typename T>
__device__ __forceinline__ void load_store(volatile T* dst, T* src, int dst_offset, int src_offset){
  typedef typename std::aligned_storage<ILP*sizeof(T), ILP*alignof(T)>::type LT;
  ((LT*)dst)[dst_offset] = ((LT*)src)[src_offset];
}

// Keep ReLU in float only. When using half, cast to float before calling.
__device__ __inline__ float relu(float a) {
  float retf = max(a, 0.f);
  return (retf);
}

// FP64 Wrapper around cublas GEMMEx
cublasStatus_t mlp_gemm(
    cublasHandle_t handle,
    cublasOperation_t transa,
    cublasOperation_t transb,
    int m,
    int n,
    int k,
    float* alpha,
    const double* A,
    int lda,
    const double* B,
    int ldb,
    const float* beta,
    double* C,
    int ldc) {
  return cublasGemmEx(
      handle,
      transa,
      transb,
      m,
      n,
      k,
      alpha,
      A,
      CUDA_R_64F,
      lda,
      B,
      CUDA_R_64F,
      ldb,
      beta,
      C,
      CUDA_R_64F,
      ldc,
      CUDA_R_64F,
      CUBLAS_GEMM_DEFAULT);
}

// FP32 Wrapper around cublas GEMMEx
cublasStatus_t mlp_gemm(
    cublasHandle_t handle,
    cublasOperation_t transa,
    cublasOperation_t transb,
    int m,
    int n,
    int k,
    float* alpha,
    const float* A,
    int lda,
    const float* B,
    int ldb,
    const float* beta,
    float* C,
    int ldc) {
  return cublasGemmEx(
      handle,
      transa,
      transb,
      m,
      n,
      k,
      alpha,
      A,
      CUDA_R_32F,
      lda,
      B,
      CUDA_R_32F,
      ldb,
      beta,
      C,
      CUDA_R_32F,
      ldc,
      CUDA_R_32F,
      CUBLAS_GEMM_DEFAULT);
}

// FP16 Tensor core wrapper around cublas GEMMEx
cublasStatus_t mlp_gemm(
    cublasHandle_t handle,
    cublasOperation_t transa,
    cublasOperation_t transb,
    int m,
    int n,
    int k,
    float* alpha,
    const at::Half* A,
    int lda,
    const at::Half* B,
    int ldb,
    float* beta,
    at::Half* C,
    int ldc) {
  return cublasGemmEx(
      handle,
      transa,
      transb,
      m,
      n,
      k,
      alpha,
      A,
      CUDA_R_16F,
      lda,
      B,
      CUDA_R_16F,
      ldb,
      beta,
      C,
      CUDA_R_16F,
      ldc,
      CUDA_R_32F,
      CUBLAS_GEMM_DEFAULT_TENSOR_OP);
}

// Bias ADD + ReLU. Assume input X is [features x batch size], assume column major.
// Bias is one 'features' long vector, with implicit broadcast.
// Currently, activation support fuesed ReLU. Safe to call in-place.
template <typename T>
__global__ void biasAddRelu_fprop(T *X, T *b, uint batch_size, uint features) {
  T r_x[ILP];
  T r_b[ILP];
  if(is_aligned(X) && is_aligned(b) && features % ILP ==0) {
    int tid = blockIdx.x * blockDim.x + threadIdx.x;
    for (; tid*ILP < features * batch_size; tid += blockDim.x * gridDim.x) {
      int row = tid % (features / ILP);
      load_store(r_x, X, 0 , tid);
      load_store(r_b, b, 0 , row);
#pragma unroll
      for(int ii = 0; ii < ILP; ii++) {
        float bias_sum = static_cast<float>(r_x[ii]) + static_cast<float>(r_b[ii]);
        r_x[ii] = relu(bias_sum);
      }
      load_store(X, r_x, tid , 0);
    }
  } else {
    int tid = blockIdx.x * blockDim.x + threadIdx.x;
    for (; tid < features * batch_size; tid += ILP * blockDim.x * gridDim.x) {
#pragma unroll
      for(int ii = 0; ii < ILP; ii++) {
        int idx = tid + ii * blockDim.x * gridDim.x;
        if(idx < features * batch_size) {
          int row = tid % features;
          r_x[ii] = X[idx];
          r_b[ii] = b[row];
        }
      }
#pragma unroll
      for(int ii = 0; ii < ILP; ii++) {
        float bias_sum = static_cast<float>(r_x[ii]) + static_cast<float>(r_b[ii]);
        r_x[ii] = relu(bias_sum);
      }
#pragma unroll
      for(int ii = 0; ii < ILP; ii++) {
        int idx = tid + ii * blockDim.x * gridDim.x;
        if(idx < features * batch_size) {
          X[idx] = r_x[ii];
        }
      }
    }
  }
}

// Compute grid size for pointwise backward kernel.
// Some intelligence needed to determine number of splits for reduction.
void get_biasAddRelu_bprop_grid_size(
    int yfeat,
    int threadsPerBlock,
    int batch_size,
    int* grid_x,
    int* grid_y) {
  // Get number of SMs for efficient reduction.
  int num_SMs = at::cuda::getCurrentDeviceProperties()->multiProcessorCount;
  // First preference, whole reduction in 1 CTA
  int nBlocks = (yfeat + threadsPerBlock - 1) / threadsPerBlock;

  // Figure out how many splits to divide reduction into. At least 32 elements per CTA.
  // we want grid_y as close to sqrt(batchsize)?
  int nRedSplits = std::sqrt(batch_size);
  // for batchsize <=64, just use 1 block
  if(batch_size < 64) nRedSplits = 1;
  // no need to go over occupancy
  nRedSplits = min((8*num_SMs)/nBlocks, nRedSplits);

  *grid_x = nBlocks;
  *grid_y = nRedSplits;
  return;
}

// Addition done deterministically via a 2-pass approach. Each CTA writes out partial
// sum, and the last CTA in grid Y dimension accumulates partials serially and writes to result.
template <typename T, int UNROLL_FACTOR>
__global__ void biasAddRelu_bprop(
    T* Y,
    T* dY,
    int features,
    int batch_size,
    T* dX,
    volatile float* intermediate,
    int* semaphores,
    T* db) {
  // The feature that this thread is responsible for
  int f = blockIdx.x * blockDim.x + threadIdx.x;

  // Compute the batch span this thread is responsible for
  int chunkSize = (batch_size + gridDim.y - 1) / gridDim.y;
  int nStart = blockIdx.y * chunkSize;
  int nSpan = min(batch_size, nStart + chunkSize) - nStart;
  volatile float* out = intermediate + blockIdx.y * features;

  // Flag to trigger last reduction.
  __shared__ bool isLastBlock;

  // Accumulate db in FP32 always
  float db_local = 0;
  if (f < features) {
    int nidx = 0;
    // Handle non-multiple of UNROLL_FACTOR residue
    for (; nidx < nSpan % UNROLL_FACTOR; nidx++) {
      int row, col, flat_idx;
      row = f;
      col = nStart + nidx;
      flat_idx = col * features + row;
      T y_val = Y[flat_idx];
      T dy_val = dY[flat_idx];
      T dx_val;
      if ((float)y_val > 0.f)
        dx_val = dy_val;
      else
        dx_val = 0;
      dX[flat_idx] = dx_val;
      db_local += (float)dx_val;
    }

    // Handle meat of work
    for (; (nidx + UNROLL_FACTOR - 1) < nSpan; nidx += UNROLL_FACTOR) {
      int row, col, flat_idx;
      row = f;
      col = nStart + nidx;
      flat_idx = col * features + row;
#pragma unroll 4
      for (int u = 0; u < UNROLL_FACTOR; u++) {
        T y_val = Y[flat_idx];
        T dy_val = dY[flat_idx];
        T dx_val;
        if ((float)y_val > 0.f)
          dx_val = dy_val;
        else
          dx_val = 0;
        dX[flat_idx] = dx_val;
        db_local += (float)dx_val;
        flat_idx += features;
      }
    }

    // Write out partial result
    out[f] = db_local;
  }
  __threadfence();
  __syncthreads();

  // Increment semaphore and check if this is the last CTA in
  // the grid_y dimension.
  if (threadIdx.x == 0 && f < features) {
    unsigned int sum_idx;
    sum_idx = atomicAdd(&(semaphores[blockIdx.x]), 1);
    isLastBlock = (sum_idx == (gridDim.y - 1));
  }
  __syncthreads();

  db_local = 0;
  if (isLastBlock && f < features) {
    for (int n = 0; n < gridDim.y; n++) {
      int row, col;
      row = f;
      col = n;
      db_local += (float)(intermediate[col * features + row]);
    }
    db[f] = (T)db_local;
  }
}

// Addition done deterministically via a 2-pass approach. Each CTA writes out partial
// sum, and the last CTA in grid Y dimension accumulates partials serially and writes to result.
template <typename T, int UNROLL_FACTOR>
__global__ void biasAddRelu_bprop_aligned(
    T* Y,
    T* dY,
    int features,
    int batch_size,
    T* dX,
    volatile float* intermediate,
    int* semaphores,
    T* db) {
  // The feature that this thread is responsible for
  int f = blockIdx.x * blockDim.x + threadIdx.x;

  // Compute the batch span this thread is responsible for
  int chunkSize = (batch_size + gridDim.y - 1) / gridDim.y;
  int nStart = blockIdx.y * chunkSize;
  int nSpan = min(batch_size, nStart + chunkSize) - nStart;
  volatile float* out = intermediate + blockIdx.y * features;

  // Flag to trigger last reduction.
  __shared__ bool isLastBlock;

  // Accumulate db in FP32 always
  float db_local[ILP];
  T r_y[ILP];
  T r_dy[ILP];
#pragma unroll
  for(int ii=0;ii<ILP;ii++){
    db_local[ii] = 0.f;
  }

  // f always <= features in this case
  //if (f < features) {
  int nidx = 0;

  // Handle non-multiple of UNROLL_FACTOR residue
  for (; nidx < nSpan % UNROLL_FACTOR; nidx++) {
    int row, col, flat_idx;
    row = f;
    col = nStart + nidx;
    flat_idx = col * features / ILP + row;

    load_store(r_y, Y, 0, flat_idx);
    load_store(r_dy, dY, 0, flat_idx);
#pragma unroll
    for(int ii=0;ii<ILP;ii++){
      if ((float)r_y[ii] <= 0.f)
        r_dy[ii] = 0;
      db_local[ii] += (float)r_dy[ii];
    }
    load_store(dX, r_dy, flat_idx, 0);
  }

  // Handle meat of work
  for (; (nidx + UNROLL_FACTOR - 1) < nSpan; nidx += UNROLL_FACTOR) {
    int row, col, flat_idx;
    row = f;
    col = nStart + nidx;
    flat_idx = col * features / ILP + row; // total threads in x == features/ILP
#pragma unroll
    for (int u = 0; u < UNROLL_FACTOR; u++) {
      load_store(r_y, Y, 0, flat_idx);
      load_store(r_dy, dY, 0, flat_idx);
#pragma unroll
      for(int ii=0;ii<ILP;ii++){
        if ((float)r_y[ii] <= 0.f)
          r_dy[ii] = 0;
        db_local[ii] += (float)r_dy[ii];
      }
      load_store(dX, r_dy, flat_idx, 0);
      flat_idx += features/ILP;
    }
  }

  if(gridDim.y == 1) {
#pragma unroll
    for(int ii=0;ii<ILP;ii++){
      r_dy[ii] = db_local[ii]; // reuse local dy buffer
    }
    load_store(db, r_dy, f, 0);
    return;
  }

  // Write out partial result
  load_store(out, db_local, f, 0);

  __threadfence();
  __syncthreads();

  // Increment semaphore and check if this is the last CTA in
  // the grid_y dimension.
  if (threadIdx.x == 0) {
    unsigned int sum_idx;
    sum_idx = atomicAdd(&(semaphores[blockIdx.x]), 1);
    isLastBlock = (sum_idx == (gridDim.y - 1));
  }
  __syncthreads();

#pragma unroll
  for(int ii=0;ii<ILP;ii++){
    db_local[ii] = 0.f;
  }
  float r_db[ILP];
  if (isLastBlock) {
    for (int n = 0; n < gridDim.y; n++) {
      int row, col;
      row = f;
      col = n;
      load_store(r_db, intermediate, 0, col * features / ILP + row);
#pragma unroll
      for(int ii=0;ii<ILP;ii++){
        db_local[ii] += r_db[ii];
      }
    }
#pragma unroll
    for(int ii=0;ii<ILP;ii++){
      r_dy[ii] = db_local[ii]; // reuse local dy buffer
    }
    load_store(db, r_dy, f, 0);
  }
}

// Lists where the num_layers-1 intermediate Y buffers start in reserved space on fprop, starting
// offset 0. The last Y value is, of course, stored in the user provided output buffer.
void get_y_offsets(
    int batch_size,
    int num_layers,
    const int* output_features,
    int* y_start_offsets) {
  y_start_offsets[0] = 0;
  for (int i = 1; i < num_layers; i++) {
    y_start_offsets[i] = y_start_offsets[i - 1] + batch_size * output_features[i - 1];
  }
}

// Returns the reserved space (in elements) needed for the MLP
size_t get_mlp_reserved_space(int batch_size, int num_layers, const int* output_features) {
  size_t res_space = 0;
  // Need to store output of every intermediate MLP - size equal to output_features[i] * batch_size
  // for all 'i' in [0, num_layers-1)
  for (int l = 0; l < num_layers; l++) {
    res_space += output_features[l] * batch_size;
  }
  return res_space;
}

// Returns the size of all fprop activations combined
size_t get_all_activations_size(int batch_size, int num_layers, const int* output_features) {
  size_t acts_size = 0;
  for (int l = 0; l < num_layers; l++) {
    acts_size += output_features[l] * batch_size;
  }
  return acts_size;
}

#if 0
// Returns the work space (in elements) needed for the MLP bprop.
size_t get_mlp_bp_workspace (int batch_size, int num_layers, const int* output_features) {
    /*
       Workspace is partitioned as
       DY_GEMMs : DX_GEMMs
    */
    size_t work_space = 0;

    // Store each intermediate dY explicitly. Need 2 dYs per MLP layer (one for o/p
    // of biasReLU_bp and one for o/p of dgrad GEMM).
    work_space += 2*get_all_activations_size(batch_size, num_layers, output_features);

    return work_space;
}
#endif

// Scratch space needed for reductions in number of elements
size_t get_reduction_scratch_space(int batch_size, int num_layers, const int* output_features) {
  size_t max_scratch_space = 0;
  // Loop over all layers to see which one needs the max scratch space
  for (int l = 0; l < num_layers; l++) {
    int tmp, num_splits;
    get_biasAddRelu_bprop_grid_size(
        output_features[l], BIASADDRELU_BPROP_NUM_THREADS, batch_size, &tmp, &num_splits);
    max_scratch_space = std::max(max_scratch_space, (size_t)(output_features[l] * num_splits));
  }

  return max_scratch_space;
}

// Buffer for semaphores
size_t get_semaphores_size(int num_layers, const int* output_features) {
  // Upper bound on semaphores is one per feature for the layer
  // with the most features.
  int max_features = 0;
  for (int l = 0; l < num_layers; l++) {
    max_features = std::max(max_features, output_features[l]);
  }
  return (size_t)max_features;
}

// Returns the work space (in elements) needed for the MLP bprop.
template <typename T>
size_t get_mlp_bp_workspace_in_bytes(int batch_size, int num_layers, const int* output_features) {
  size_t work_space = 0;

  // Store each intermediate dY explicitly. Need 2 dYs per MLP layer (one for o/p
  // of biasReLU_bp and one for o/p of dgrad GEMM).
  work_space += 2 * get_all_activations_size(batch_size, num_layers, output_features) * sizeof(T);
  work_space +=
      get_reduction_scratch_space(batch_size, num_layers, output_features) * sizeof(float);
  work_space += get_semaphores_size(num_layers, output_features) * sizeof(int);

  return work_space;
}

// Returns pointers to each segment of the workspace
template <typename T>
void partition_mlp_bp_workspace(
    int batch_size,
    int num_layers,
    const int* output_features,
    void* work_space,
    T** dy_gemms,
    T** dx_gemms,
    float** db_scratch,
    int** semaphores) {
  /*
     Workspace is partitioned as
     DY_GEMMs : DX_GEMMs : DB_SCRATCH : SEMAPHORES
  */
  // Start address where dy_gemm tensors are stored
  *dy_gemms = reinterpret_cast<T*>(work_space);
  // Start address where dx_gemm tensors are stored
  *dx_gemms = *dy_gemms + get_all_activations_size(batch_size, num_layers, output_features);
  // Start address where db intermediate tensors are stored
  *db_scratch = reinterpret_cast<float*>(
      *dx_gemms + get_all_activations_size(batch_size, num_layers, output_features));
  // Start address of semaphores
  *semaphores = reinterpret_cast<int*>(
      *db_scratch + get_reduction_scratch_space(batch_size, num_layers, output_features));

  return;
}

// Does a simple MLP fprop (GEMM+bias+ReLU).
// Can handle num_layers number of layers, each with its own shape. Output of layer i is assumed
// to be input of layer i+1. output_features, WPtr and BPtr are arrays of length num_layers, and
// must be in the same order i.e. WPtr[i] and BPtr[i] are respectively the weight and bias of layer
// 'i'.
template <typename T>
int mlp_fp(
    T* X,
    int input_features,
    int batch_size,
    T** WPtr,
    int num_layers,
    int* output_features,
    T** BPtr,
    T* Y,
    T* reserved_space) {
  T *weight, *input, *output, *bias;
  T *reserved_space_x, *reserved_space_y;
  reserved_space_x = NULL;
  reserved_space_y = reserved_space;

  // Get cublas handle from Pytorch
  cublasHandle_t handle = at::cuda::getCurrentCUDABlasHandle();
  // Get the stream from cublas handle to reuse for biasReLU kernel.
  cudaStream_t stream;
  cublasGetStream(handle, &stream);

  for (int layer = 0; layer < num_layers; layer++) {
    weight = WPtr[layer];
    input = (layer == 0) ? X : reserved_space_x;
    output = (layer == num_layers - 1) ? Y : reserved_space_y;
    bias = BPtr[layer];
    int ifeat = (layer == 0) ? input_features : output_features[layer - 1];
    int ofeat = output_features[layer];

    float one = 1.f;
    float zero = 0.f;

    cublasStatus_t cublas_status;
    // Call GEMM: fprop is Y = W'X
    cublas_status = mlp_gemm(
        handle,
        CUBLAS_OP_T,
        CUBLAS_OP_N,
        ofeat,
        batch_size,
        ifeat,
        &one,
        weight,
        ifeat,
        input,
        ifeat,
        &zero,
        output,
        ofeat);

    if (cublas_status != CUBLAS_STATUS_SUCCESS) {
      printf("GEMM fprop failed with %d\n", cublas_status);
      return 1;
    }

    // Call biasReLU
    const uint &input_size = ofeat;
    int num_blocks = 0;
    int num_SMs = at::cuda::getCurrentDeviceProperties()->multiProcessorCount;
    cudaOccupancyMaxActiveBlocksPerMultiprocessor(&num_blocks, biasAddRelu_fprop<T>, BIASADDRELU_FPROP_NUM_THREADS, 0);
    biasAddRelu_fprop<<<num_SMs*num_blocks, BIASADDRELU_FPROP_NUM_THREADS, 0, stream>>>(output, bias, batch_size, input_size);

    // Set current output as next layer input
    reserved_space_x = reserved_space_y;
    // Set next layer output
    reserved_space_y += ofeat * batch_size;
  }

  return 0;
}

// Does a simple MLP bprop (GEMM+bias+ReLU).
// Needs reserved space to come back exactly as it was populated in fprop.
// Does dgrad and wgrad sequentially.
template <typename T>
int mlp_bp(
    T* X,
    T* Y,
    int input_features,
    int batch_size,
    T** WPtr,
    int num_layers,
    int* output_features,
    T* dY,
    T* reserved_space,
    T* work_space,
    T* dX,
    T** dwPtr,
    T** dbPtr) {
  T* weight;
  T *dweight, *dx, *dy, *dbias;
  T *x, *y;

  // Where the dx of the biasReLU (== dy of gemm) is stored. Can be thrown away
  // after bp call.
  T* dy_gemm_base;
  // Where the dx after GEMM is stored.
  T* dx_gemm_base;
  // Where partial reduction results are stored.
  float* db_scratch;
  // Semaphores for reduction.
  int* semaphores;

  partition_mlp_bp_workspace<T>(
      batch_size,
      num_layers,
      output_features,
      work_space,
      &dy_gemm_base,
      &dx_gemm_base,
      &db_scratch,
      &semaphores);

  size_t semaphore_size = get_semaphores_size(num_layers, output_features) * sizeof(int);

  // Get cublas handle from Pytorch
  cublasHandle_t handle = at::cuda::getCurrentCUDABlasHandle();
  // Get the stream from cublas handle to reuse for biasReLU kernel.
  cudaStream_t stream;
  cublasGetStream(handle, &stream);

  int* y_offsets = (int*)malloc(num_layers * sizeof(int));
  get_y_offsets(batch_size, num_layers, output_features, y_offsets);

  for (int layer = num_layers - 1; layer >= 0; layer--) {
    weight = WPtr[layer];
    dweight = dwPtr[layer];

    // x is read from reserved space
    x = (layer == 0) ? X : reserved_space + y_offsets[layer - 1];
    // dx is written in workspace for all but layer==0
    dx = (layer == 0) ? dX : dx_gemm_base + y_offsets[layer - 1];

    // y is read from reserved space
    y = (layer == num_layers - 1) ? Y : reserved_space + y_offsets[layer];
    // dx from layer+1
    dy = (layer == num_layers - 1) ? dY : dx_gemm_base + y_offsets[layer];
    // dy_gemm is written to and read immediately
    T* dy_gemm = dy_gemm_base + y_offsets[layer];

    dbias = dbPtr[layer];
    int xfeat = (layer == 0) ? input_features : output_features[layer - 1];
    int yfeat = output_features[layer];

    float one = 1.f;
    float zero = 0.f;

    // Call bias ReLU backprop - first implementation, 1 thread per bias element
    int threadsPerBlock = BIASADDRELU_BPROP_NUM_THREADS;
    int grid_x, grid_y;
    get_biasAddRelu_bprop_grid_size(yfeat, threadsPerBlock, batch_size, &grid_x, &grid_y);

    dim3 block(threadsPerBlock);

    cudaMemsetAsync(semaphores, 0, semaphore_size, stream);

    if(yfeat % (ILP * threadsPerBlock) == 0 &&
       is_aligned(y) &&
       is_aligned(dy) &&
       is_aligned(dy_gemm) &&
       is_aligned(dbias)){
      dim3 grid(grid_x/ILP, grid_y);
      biasAddRelu_bprop_aligned<T, 4><<<grid, block, 0, stream>>>(
        y, dy, yfeat, batch_size, dy_gemm, db_scratch, semaphores, dbias);
    } else {
      dim3 grid(grid_x, grid_y);
      biasAddRelu_bprop<T, 4><<<grid, block, 0, stream>>>(
        y, dy, yfeat, batch_size, dy_gemm, db_scratch, semaphores, dbias);
    }

    cublasStatus_t cublas_status;
    // Call GEMM dgrad
    cublas_status = mlp_gemm(
        handle,
        CUBLAS_OP_N,
        CUBLAS_OP_N,
        xfeat,
        batch_size,
        yfeat,
        &one,
        weight,
        xfeat,
        dy_gemm,
        yfeat,
        &zero,
        dx,
        xfeat);

    if (cublas_status != CUBLAS_STATUS_SUCCESS) {
      printf("GEMM dgrad failed with %d\n", cublas_status);
      return 1;
    }

    // Call GEMM wgrad
    cublas_status = mlp_gemm(
        handle,
        CUBLAS_OP_N,
        CUBLAS_OP_T,
        xfeat,
        yfeat,
        batch_size,
        &one,
        x,
        xfeat,
        dy_gemm,
        yfeat,
        &zero,
        dweight,
        xfeat);

    if (cublas_status != CUBLAS_STATUS_SUCCESS) {
      printf("GEMM wgrad failed with %d\n", cublas_status);
      return 1;
    }
  }

  return 0;
}

// Instantiate for floating point types
template int mlp_fp<float>(
    float* X,
    int input_features,
    int batch_size,
    float** WPtr,
    int num_layers,
    int* output_features,
    float** BPtr,
    float* Y,
    float* reserved_space);

template int mlp_bp<float>(
    float* X,
    float* Y,
    int input_features,
    int batch_size,
    float** WPtr,
    int num_layers,
    int* output_features,
    float* dY,
    float* reserved_space,
    float* work_space,
    float* dX,
    float** dwPtr,
    float** dbPtr);

template int mlp_fp<at::Half>(
    at::Half* X,
    int input_features,
    int batch_size,
    at::Half** WPtr,
    int num_layers,
    int* output_features,
    at::Half** BPtr,
    at::Half* Y,
    at::Half* reserved_space);

template int mlp_bp<at::Half>(
    at::Half* X,
    at::Half* Y,
    int input_features,
    int batch_size,
    at::Half** WPtr,
    int num_layers,
    int* output_features,
    at::Half* dY,
    at::Half* reserved_space,
    at::Half* work_space,
    at::Half* dX,
    at::Half** dwPtr,
    at::Half** dbPtr);

template int mlp_fp<double>(
    double* X,
    int input_features,
    int batch_size,
    double** WPtr,
    int num_layers,
    int* output_features,
    double** BPtr,
    double* Y,
    double* reserved_space);

template int mlp_bp<double>(
    double* X,
    double* Y,
    int input_features,
    int batch_size,
    double** WPtr,
    int num_layers,
    int* output_features,
    double* dY,
    double* reserved_space,
    double* work_space,
    double* dX,
    double** dwPtr,
    double** dbPtr);

template size_t get_mlp_bp_workspace_in_bytes<float>(
    int batch_size,
    int num_layers,
    const int* output_features);
template size_t get_mlp_bp_workspace_in_bytes<at::Half>(
    int batch_size,
    int num_layers,
    const int* output_features);
template size_t get_mlp_bp_workspace_in_bytes<double>(
    int batch_size,
    int num_layers,
    const int* output_features);