strided_batched_gemm.h 7.87 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
#include <vector>
#include <iostream>

#include <cuda.h>
#include <cuda_runtime.h>
#include <cuda_fp16.h>

#include <ATen/cuda/CUDAContext.h>
#include "THC/THC.h"
#include <ATen/cuda/CUDAContext.h>

// symbol to be automatically resolved by PyTorch libs
extern THCState *state;

15
16
17
18
19
20
21
22
23
24
25
rocblas_datatype a_type       = rocblas_datatype_f16_r;
rocblas_datatype b_type       = rocblas_datatype_f16_r;
rocblas_datatype c_type       = rocblas_datatype_f16_r;
rocblas_datatype d_type       = rocblas_datatype_f16_r;
rocblas_datatype compute_type       = rocblas_datatype_f32_r;

rocblas_gemm_algo algo           = rocblas_gemm_algo_standard;
int32_t           solution_index = 0;
rocblas_int       flags          = 0;


26
27
28
29
30
31
32
33
34
35
cublasOperation_t convertTransToCublasOperation(char trans) {
  if (trans == 't') return CUBLAS_OP_T;
  else if (trans == 'n') return CUBLAS_OP_N;
  else if (trans == 'c') return CUBLAS_OP_C;
  else {
    THError("trans must be one of: t, n, c");
    return CUBLAS_OP_T;
  }
}

36
void RocblasStridedBatchedGemm(THCState *state, char transa, char transb, long m, long n, long k,
37
                    float alpha, const half *a, long lda, long strideA, const half *b, long ldb, long strideB,
38
                    float beta, half *c, long ldc, long strideC, half *d, long ldd, long strideD, long batchCount, rocblas_gemm_algo algo) {
39
40
    cublasOperation_t opa = convertTransToCublasOperation(transa);
    cublasOperation_t opb = convertTransToCublasOperation(transb);
41

42
    cublasHandle_t handle = at::cuda::getCurrentCUDABlasHandle();
43
44
    cudaStream_t   stream = at::cuda::getCurrentCUDAStream().stream();
    cublasSetStream(handle, stream);
45
46
    float fAlpha = alpha;
    float fBeta = beta;
47
    THCublasCheck(rocblas_gemm_strided_batched_ex(handle,
48
                                     opa, opb, (int)m, (int)n, (int)k,
49
50
51
52
53
                                     (void*)&fAlpha, a, a_type, (int)lda, strideA,
                                     b, b_type, (int)ldb, strideB,
                                     (void*)&fBeta, c, c_type, (int)ldc, strideC,
				     d, d_type, int(ldd), strideD,
                                     (int)batchCount, compute_type, algo, solution_index, flags));
54
55
56
57
}

void gemm_switch_fp32accum(THCState *state, char transa, char transb, long m, long n, long k,
                           float alpha, const half *a, long lda, long strideA, const half *b, long ldb, long strideB,
58
                           float beta, half *c, long ldc, long strideC, half *d, long ldd, long strideD, long batchCount) {
59
  auto stream = c10::cuda::getCurrentCUDAStream();
60
  if        ( (transa == 't') && (transb == 'n') ) { 
61
62
    if      (!(lda & 0x7) && !(ldb & 0x7) && !(ldc & 0x7)) { RocblasStridedBatchedGemm(state, transa, transb, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, d, ldd, strideD, batchCount, algo); }
    else                                                   { RocblasStridedBatchedGemm(state, transa, transb, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, d, ldd, strideD, batchCount, algo); }
63
  } else if ( (transa == 'n') && (transb == 'n') ) {
64
65
    if      (!(lda & 0x7) && !(ldb & 0x7) && !(ldc & 0x7)) { RocblasStridedBatchedGemm(state, transa, transb, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, d, ldd, strideD, batchCount, algo); }
    else                                                   { RocblasStridedBatchedGemm(state, transa, transb, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, d, ldd, strideD, batchCount, algo); }
66
  } else if ( (transa == 'n') && (transb == 't') ) {
67
68
    if      (!(lda & 0x7) && !(ldb & 0x7) && !(ldc & 0x7)) {RocblasStridedBatchedGemm(state, transa, transb, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, d, ldd, strideD, batchCount, algo); }
    else                                                   { RocblasStridedBatchedGemm(state, transa, transb, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, d, ldd, strideD, batchCount, algo); }
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
  } else {
    AT_ASSERTM(false, "TransA and TransB are invalid");
  }
}

void adjustLdLevel3(char transa, char transb, int64_t m, int64_t n, int64_t k, int64_t *lda, int64_t *ldb, int64_t *ldc)
{
  int transa_ = ((transa == 't') || (transa == 'T'));
  int transb_ = ((transb == 't') || (transb == 'T'));

  // Note: leading dimensions generally are checked that they are > 0 and at least as big the result
  // requires (even if the value won't be used).
  if(n <= 1)
    *ldc = std::max<int64_t>(m, 1);

  if(transa_)
  {
    if(m <= 1)
      *lda = std::max<int64_t>(k, 1);
  }
  else
  {
    if(k <= 1)
      *lda = std::max<int64_t>(m, 1);
  }

  if(transb_)
  {
    if(k <= 1)
      *ldb = std::max<int64_t>(n, 1);
  }
  else
  {
    if(n <= 1)
      *ldb = std::max<int64_t>(k, 1);
  }

}

void HgemmStridedBatched(THCState *state, char transa, char transb, long m, long n, long k,
                             float alpha, const half *a, long lda, long strideA, const half *b, long ldb, long strideB,
110
                             float beta, half *c, long ldc, long strideC, half *d, long ldd, long strideD, long batchCount)
111
112
113
114
115
116
117
118
119
120
121
{
  if( (m >= INT_MAX) || (n >= INT_MAX) || (k >= INT_MAX) || (lda >= INT_MAX)  || (ldb >= INT_MAX) || (ldc >= INT_MAX) || (batchCount >= INT_MAX) )

  {
    THError("Cublas_SgemmStridedBatched only supports m, n, k, lda, ldb, ldc, batchCount"
            "with the bound [val] <= %d", INT_MAX);
  }

  adjustLdLevel3(transa, transb, m, n, k, &lda, &ldb, &ldc);

  //gemm_switch(state, transa, transb, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, batchCount);
122
  gemm_switch_fp32accum(state, transa, transb, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, d, ldd, strideD, batchCount);
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
}

/******
at::Tensor strided_batched_gemm_cuda(
    float beta,
    at::Tensor in_result,
    float alpha,
    at::Tensor batch1,
    at::Tensor batch2) {

  bool transpose_result;
  char transpose_batch1, transpose_batch2;
  int64_t lda, ldb, ldc;
  at::Tensor result, input1, input2;
  if (in_result.stride(1) == 1)
  {
    transpose_result = false;
    result = in_result;
    ldc = result.stride(2);
  }
  else if (in_result.stride(2) == 1)
  {
    transpose_result = true;

    at::Tensor swap = batch2;
    batch2 = batch1;
    batch1 = swap;

    result = in_result;
    ldc = result.stride(1);
  } else { 
    AT_ASSERTM(false, "result should be contiguous");
  }

  if (batch1.stride(transpose_result ? 2 : 1) == 1 &&
      batch1.stride(transpose_result ? 1 : 2) != 0) {
    transpose_batch1 = 'n';
    input1 = batch1;
    lda = input1.stride(transpose_result ? 1 : 2);
  } else if (batch1.stride(transpose_result ? 1 : 2) == 1 &&
             batch1.stride(transpose_result ? 2 : 1) != 0) {
    transpose_batch1 = 't';
    input1 = batch1;
    lda = input1.stride(transpose_result ? 2 : 1);
  } else {
    AT_ASSERTM(false, "input1 should be contiguous");
  }

  if (batch2.stride(transpose_result ? 2 : 1) == 1 &&
      batch2.stride(transpose_result ? 1 : 2) != 0) {
    transpose_batch2 = 'n';
    input2 = batch2;
    ldb = input2.stride(transpose_result ? 1 : 2);
  } else if (batch2.stride(transpose_result ? 1 : 2) == 1 &&
             batch2.stride(transpose_result ? 2 : 1) != 0) {
    transpose_batch2 = 't';
    input2 = batch2;
    ldb = input2.stride(transpose_result ? 2 : 1);
  } else {
    AT_ASSERTM(false, "input2 should be contiguous");
  }
  int64_t num_batches = result.size(0);

  HgemmStridedBatched(
      state,
      transpose_batch1,
      transpose_batch2,
      result.size(transpose_result ? 2 : 1),
      result.size(transpose_result ? 1 : 2),
      input1.size(transpose_result ? 1 : 2),
      alpha,
      static_cast<const half*>(input1.data_ptr()), lda, input1.stride(0),
      static_cast<const half*>(input2.data_ptr()), ldb, input2.stride(0),
      beta,
      static_cast<half*>(result.data_ptr()), ldc, result.stride(0),
      num_batches);

  return in_result;
}

***/