layer_norm_cuda_kernel.cu 35.1 KB
Newer Older
1
2
3
#include "ATen/ATen.h"
#include "ATen/AccumulateType.h"
#include "ATen/cuda/CUDAContext.h"
4
#include "ATen/cuda/DeviceUtils.cuh"
5
6
7
8

#include <cuda.h>
#include <cuda_runtime.h>

9
10
#include "type_shim.h"

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
template<typename U> __device__
void cuWelfordOnlineSum(
  const U curr,
  U& mu,
  U& sigma2,
  U& count)
{
  count = count + U(1);
  U delta = curr - mu;
  U lmean = mu + delta / count;
  mu = lmean;
  U delta2 = curr - lmean;
  sigma2 = sigma2 + delta * delta2;
}

template<typename U> __device__
void cuChanOnlineSum(
  const U muB,
  const U sigma2B,
  const U countB,
  U& mu,
  U& sigma2,
  U& count)
{
  U delta = muB - mu;
  U nA = count;
  U nB = countB;
  count = count + countB;
  U nX = count;
  if (nX > U(0)) {
    nA = nA / nX;
    nB = nB / nX;
    mu = nA*mu + nB*muB;
    sigma2 = sigma2 + sigma2B + delta * delta * nA * nB * nX;
  } else {
    mu = U(0);
    sigma2 = U(0);
  }
}

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
template<typename U> __device__
void cuRMSOnlineSum(
  const U curr,
  U& sigma2)
{
  sigma2 = sigma2 + curr * curr;
}

template<typename U> __device__
void cuChanRMSOnlineSum(
  const U sigma2B,
  U& sigma2)
{
  sigma2 = sigma2 + sigma2B;
}


68
69
70
71
72
template<typename T, typename U> __device__
void cuWelfordMuSigma2(
  const T* __restrict__ vals,
  const int n1,
  const int n2,
73
  const int i1,
74
75
  U& mu,
  U& sigma2,
76
77
  U* buf,
  bool rms_only)
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
{
  // Assumptions:
  // 1) blockDim.x == warpSize
  // 2) Tensor is contiguous
  // 3) 2*blockDim.y*sizeof(U)+blockDim.y*sizeof(int) shared memory available.
  //
  // compute variance and mean over n2
  U count = U(0);
  mu= U(0);
  sigma2 = U(0);
  if (i1 < n1) {
    // one warp normalizes one n1 index,
    // synchronization is implicit
    // initialize with standard Welford algorithm
    const int numx = blockDim.x * blockDim.y;
    const int thrx = threadIdx.x + threadIdx.y * blockDim.x;
    const T* lvals = vals + i1*n2;
    int l = 4*thrx;
    for (;  l+3 < n2;  l+=4*numx) {
      for (int k = 0;  k < 4;  ++k) {
        U curr = static_cast<U>(lvals[l+k]);
99
100
101
102
103
        if (!rms_only) {
          cuWelfordOnlineSum<U>(curr,mu,sigma2,count);
        } else {
          cuRMSOnlineSum<U>(curr, sigma2);
        }
104
105
106
107
      }
    }
    for (;  l < n2;  ++l) {
      U curr = static_cast<U>(lvals[l]);
108
109
110
111
112
      if (!rms_only) {
        cuWelfordOnlineSum<U>(curr,mu,sigma2,count);
      } else {
       cuRMSOnlineSum<U>(curr, sigma2);
      }
113
114
115
116
117
    }
    // intra-warp reductions
    for (int l = 0;  l <= 4;  ++l) {
      int srcLaneB = (threadIdx.x+(1<<l))&31;
      U sigma2B = WARP_SHFL(sigma2, srcLaneB);
118
119
120
121
122
123
124
      if (!rms_only) {
        U muB = WARP_SHFL(mu, srcLaneB);
        U countB = WARP_SHFL(count, srcLaneB);
        cuChanOnlineSum<U>(muB,sigma2B,countB,mu,sigma2,count);
      } else {
        cuChanRMSOnlineSum<U>(sigma2B, sigma2);
      }
125
126
127
128
129
130
131
132
133
134
    }
    // threadIdx.x == 0 has correct values for each warp
    // inter-warp reductions
    if (blockDim.y > 1) {
      U* ubuf = (U*)buf;
      U* ibuf = (U*)(ubuf + blockDim.y);
      for (int offset = blockDim.y/2;  offset > 0;  offset /= 2) {
        // upper half of warps write to shared
        if (threadIdx.x == 0 && threadIdx.y >= offset && threadIdx.y < 2*offset) {
          const int wrt_y = threadIdx.y - offset;
135
136
137
138
          if (!rms_only) {
            ubuf[2*wrt_y] = mu;
            ibuf[wrt_y] = count;
          }
139
140
141
142
143
144
          ubuf[2*wrt_y+1] = sigma2;
        }
        __syncthreads();
        // lower half merges
        if (threadIdx.x == 0 && threadIdx.y < offset) {
          U sigma2B = ubuf[2*threadIdx.y+1];
145
146
147
148
149
150
151
          if (!rms_only) {
            U muB = ubuf[2*threadIdx.y];
            U countB = ibuf[threadIdx.y];
            cuChanOnlineSum<U>(muB,sigma2B,countB,mu,sigma2,count);
          } else {
            cuChanRMSOnlineSum<U>(sigma2B,sigma2);
          }
152
153
154
155
156
        }
        __syncthreads();
      }
      // threadIdx.x = 0 && threadIdx.y == 0 only thread that has correct values
      if (threadIdx.x == 0 && threadIdx.y == 0) {
157
158
159
        if (!rms_only) {
          ubuf[0] = mu;
        }
160
161
162
        ubuf[1] = sigma2;
      }
      __syncthreads();
163
164
165
      if (!rms_only) {
        mu = ubuf[0];
      }
166
167
168
      sigma2 = ubuf[1]/U(n2);
      // don't care about final value of count, we know count == n2
    } else {
169
170
171
      if (!rms_only) {
        mu = WARP_SHFL(mu, 0);
      }
172
173
174
175
176
177
178
179
180
181
      sigma2 = WARP_SHFL(sigma2/U(n2), 0);
    }
  }
}

template<> __device__
void cuWelfordMuSigma2(
  const at::Half* __restrict__ vals,
  const int n1,
  const int n2,
182
  const int i1,
183
184
  float& mu,
  float& sigma2,
185
186
  float* buf,
  bool rms_only)
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
{
  // Assumptions:
  // 1) blockDim.x == warpSize
  // 2) Tensor is contiguous
  // 3) 2*blockDim.y*sizeof(U)+blockDim.y*sizeof(int) shared memory available.
  //
  // compute variance and mean over n2
  float count = 0.0f;
  mu= float(0);
  sigma2 = float(0);
  if (i1 < n1) {
    // one warp normalizes one n1 index,
    // synchronization is implicit
    // initialize with standard Welford algorithm
    const int numx = blockDim.x * blockDim.y;
    const int thrx = threadIdx.x + threadIdx.y * blockDim.x;
    const at::Half* lvals = vals + i1*n2;
    int l = 8*thrx;
    if ((((size_t)lvals)&3) != 0) {
      // 16 bit alignment
      // first thread consumes first point
      if (thrx == 0) {
        float curr = static_cast<float>(lvals[0]);
210
211
212
213
214
215
        if (!rms_only) {
          cuWelfordOnlineSum(curr,mu,sigma2,count);
        } else {
          cuRMSOnlineSum(curr, sigma2);
        }

216
217
218
219
220
221
222
      }
      ++l;
    }
    // at this point, lvals[l] are 32 bit aligned for all threads.
    for (;  l+7 < n2;  l+=8*numx) {
      for (int k = 0;  k < 8;  k+=2) {
        float2 curr = __half22float2(*((__half2*)(lvals+l+k)));
223
224
225
226
227
228
229
        if (!rms_only) {
          cuWelfordOnlineSum(curr.x,mu,sigma2,count);
          cuWelfordOnlineSum(curr.y,mu,sigma2,count);
        } else {
          cuRMSOnlineSum(curr.x, sigma2);
          cuRMSOnlineSum(curr.y, sigma2);
        }
230
231
232
233
      }
    }
    for (;  l < n2;  ++l) {
      float curr = static_cast<float>(lvals[l]);
234
235
236
237
238
      if (!rms_only) {
        cuWelfordOnlineSum(curr,mu,sigma2,count);
      } else {
        cuRMSOnlineSum(curr, sigma2);
      }
239
240
241
242
243
    }
    // intra-warp reductions
    for (int l = 0;  l <= 4;  ++l) {
      int srcLaneB = (threadIdx.x+(1<<l))&31;
      float sigma2B = WARP_SHFL(sigma2, srcLaneB);
244
245
246
247
248
249
250
      if (!rms_only) {
        float muB = WARP_SHFL(mu, srcLaneB);
        float countB = WARP_SHFL(count, srcLaneB);
        cuChanOnlineSum(muB,sigma2B,countB,mu,sigma2,count);
      } else {
        cuChanRMSOnlineSum(sigma2B, sigma2);
      }
251
252
253
254
255
256
257
258
259
260
261
    }
    // threadIdx.x == 0 has correct values for each warp
    // inter-warp reductions
    if (blockDim.y > 1) {
      float* ubuf = (float*)buf;
      float* ibuf = (float*)(ubuf + blockDim.y);
      for (int offset = blockDim.y/2;  offset > 0;  offset /= 2) {
        // upper half of warps write to shared
        if (threadIdx.x == 0 && threadIdx.y >= offset && threadIdx.y < 2*offset) {
          const int wrt_y = threadIdx.y - offset;
          ubuf[2*wrt_y+1] = sigma2;
262
263
264
265
          if (!rms_only) {
            ubuf[2*wrt_y] = mu;
            ibuf[wrt_y] = count;
          }
266
267
268
269
270
        }
        __syncthreads();
        // lower half merges
        if (threadIdx.x == 0 && threadIdx.y < offset) {
          float sigma2B = ubuf[2*threadIdx.y+1];
271
272
273
274
275
276
277
          if (!rms_only) {
            float muB = ubuf[2*threadIdx.y];
            float countB = ibuf[threadIdx.y];
            cuChanOnlineSum(muB,sigma2B,countB,mu,sigma2,count);
          } else {
            cuChanRMSOnlineSum(sigma2B, sigma2);
          }
278
279
280
281
282
        }
        __syncthreads();
      }
      // threadIdx.x = 0 && threadIdx.y == 0 only thread that has correct values
      if (threadIdx.x == 0 && threadIdx.y == 0) {
283
284
285
        if (!rms_only) {
          ubuf[0] = mu;
        }
286
287
288
        ubuf[1] = sigma2;
      }
      __syncthreads();
289
290
291
      if (!rms_only) {
        mu = ubuf[0];
      }
292
293
294
      sigma2 = ubuf[1]/float(n2);
      // don't care about final value of count, we know count == n2
    } else {
295
296
297
      if (!rms_only) {
        mu = WARP_SHFL(mu, 0);
      }
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
      sigma2 = WARP_SHFL(sigma2/float(n2), 0);
    }
  }
}

template<typename U> U rsqrt(U v) {
  return U(1) / sqrt(v);
}
template<> float rsqrt(float v) {
  return rsqrtf(v);
}
template<> double rsqrt(double v) {
  return rsqrt(v);
}

namespace {
// This is the un-specialized struct.  Note that we prevent instantiation of this
// struct by putting an undefined symbol in the function body so it won't compile.
Michael Carilli's avatar
Michael Carilli committed
316
317
318
319
320
321
322
323
324
325
326
327
//  template <typename T>
//  struct SharedMemory
//  {
//      // Ensure that we won't compile any un-specialized types
//      __device__ T *getPointer()
//      {
//          extern __device__ void error(void);
//          error();
//          return NULL;
//      }
//  };
// https://github.com/NVIDIA/apex/issues/246
328
template <typename T>
Michael Carilli's avatar
Michael Carilli committed
329
struct SharedMemory;
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351

template <>
struct SharedMemory <float>
{
    __device__ float *getPointer()
    {
        extern __shared__ float s_float[];
        return s_float;
    }
};

template <>
struct SharedMemory <double>
{
    __device__ double *getPointer()
    {
        extern __shared__ double s_double[];
        return s_double;
    }
};
}

Masaki Kozuki's avatar
Masaki Kozuki committed
352
353
354
template<typename T, typename U, typename V> __device__
void cuApplyLayerNorm_(
  V* __restrict__ output_vals,
355
356
357
358
359
360
  U* __restrict__ mean,
  U* __restrict__ invvar,
  const T* __restrict__ vals,
  const int n1,
  const int n2,
  const U epsilon,
Masaki Kozuki's avatar
Masaki Kozuki committed
361
  const V* __restrict__ gamma,
362
363
  const V* __restrict__ beta,
  bool rms_only
Masaki Kozuki's avatar
Masaki Kozuki committed
364
  )
365
366
367
368
369
{
  // Assumptions:
  // 1) blockDim.x == warpSize
  // 2) Tensors are contiguous
  //
370
  for (auto i1=blockIdx.y; i1 < n1; i1 += gridDim.y) {
371
372
373
    SharedMemory<U> shared;
    U* buf = shared.getPointer();
    U mu,sigma2;
374
375
    cuWelfordMuSigma2(vals,n1,n2,i1,mu,sigma2,buf,rms_only);

376
    const T* lvals = vals + i1*n2;
Masaki Kozuki's avatar
Masaki Kozuki committed
377
    V* ovals = output_vals + i1*n2;
378
379
380
    U c_invvar = rsqrt(sigma2 + epsilon);
    const int numx = blockDim.x * blockDim.y;
    const int thrx = threadIdx.x + threadIdx.y * blockDim.x;
381
    if (gamma != NULL && (beta != NULL || rms_only)) {
382
383
      for (int i = thrx;  i < n2;  i+=numx) {
        U curr = static_cast<U>(lvals[i]);
384
385
386
387
388
389
        if (!rms_only) {
          ovals[i] = gamma[i] * static_cast<V>(c_invvar * (curr - mu)) + beta[i];
        } else {
          ovals[i] = gamma[i] * static_cast<V>(c_invvar * curr);
        }

390
391
392
393
      }
    } else {
      for (int i = thrx;  i < n2;  i+=numx) {
        U curr = static_cast<U>(lvals[i]);
394
395
396
397
398
        if (!rms_only) {
          ovals[i] = static_cast<V>(c_invvar * (curr - mu));
        } else {
          ovals[i] = static_cast<V>(c_invvar * curr);
        }
399
400
401
      }
    }
    if (threadIdx.x == 0 && threadIdx.y == 0) {
402
403
404
      if (!rms_only) {
        mean[i1] = mu;
      }
405
406
      invvar[i1] = c_invvar;
    }
eqy's avatar
eqy committed
407
    __syncthreads();
408
409
410
  }
}

Masaki Kozuki's avatar
Masaki Kozuki committed
411
412
413
414
415
416
417
418
419
420
421
422
423
template<typename T, typename U, typename V=T> __global__
void cuApplyLayerNorm(
  V* __restrict__ output_vals,
  U* __restrict__ mean,
  U* __restrict__ invvar,
  const T* __restrict__ vals,
  const int n1,
  const int n2,
  const U epsilon,
  const V* __restrict__ gamma,
  const V* __restrict__ beta
  )
{
424
  cuApplyLayerNorm_<T, U, V>(output_vals, mean, invvar, vals, n1, n2, epsilon, gamma, beta, false);
Masaki Kozuki's avatar
Masaki Kozuki committed
425
426
}

427
428
429
430
431
432
433
434
435
436
437
438
template<typename T, typename U, typename V=T> __global__
void cuApplyRMSNorm(
  V* __restrict__ output_vals,
  U* __restrict__ invvar,
  const T* __restrict__ vals,
  const int n1,
  const int n2,
  const U epsilon,
  const V* __restrict__ gamma)
{
  cuApplyLayerNorm_<T, U, V>(output_vals, NULL, invvar, vals, n1, n2, epsilon, gamma, NULL, true);
}
Masaki Kozuki's avatar
Masaki Kozuki committed
439
440

template<typename T, typename U, typename V> __device__
441
442
443
444
445
446
447
448
449
void cuLoadWriteStridedInputs(
    const int i1_block,
    const int thr_load_row_off,
    const int thr_load_col_off,
    const int i2_off,
    const int row_stride,
    U* warp_buf1,
    U* warp_buf2,
    const T* input,
Masaki Kozuki's avatar
Masaki Kozuki committed
450
    const V* dout,
451
452
453
    const int i1_end,
    const int n2,
    const U* __restrict__ mean,
454
455
    const U* __restrict__ invvar,
    bool rms_only
456
457
458
459
    )
{
  int i1 = i1_block+thr_load_row_off;
  if (i1 < i1_end) {
460
461
462
463
    U curr_mean;
    if (!rms_only) {
      curr_mean = mean[i1];
    }
464
465
466
467
468
469
470
    U curr_invvar = invvar[i1];
    for (int k = 0;  k < blockDim.y;  ++k) {
      int i2 = i2_off + k;
      int load_idx = i1*n2+i2;
      int write_idx = thr_load_row_off*row_stride+thr_load_col_off+k;
      if (i2<n2) {
        U curr_input = static_cast<U>(input[load_idx]);
Masaki Kozuki's avatar
Masaki Kozuki committed
471
        U curr_dout = static_cast<U>(dout[load_idx]);
472
473
474
475
476
477
        if (!rms_only) {
          warp_buf1[write_idx] = curr_dout;
          warp_buf2[write_idx] = curr_dout * (curr_input - curr_mean) * curr_invvar;
        } else {
          warp_buf2[write_idx] = curr_dout * (curr_input) * curr_invvar;
        }
478
      } else {
479
480
481
        if (!rms_only) {
          warp_buf1[write_idx] = U(0);
        }
482
483
484
485
486
487
        warp_buf2[write_idx] = U(0);
      }
    }
  } else {
    for (int k = 0;  k < blockDim.y;  ++k) {
      int write_idx = thr_load_row_off*row_stride+thr_load_col_off+k;
488
489
490
      if (!rms_only) {
        warp_buf1[write_idx] = U(0);
      }
491
492
493
494
495
      warp_buf2[write_idx] = U(0);
    }
  }
}

Masaki Kozuki's avatar
Masaki Kozuki committed
496
template<typename T, typename U, typename V> __device__
497
498
499
500
501
502
503
504
505
void cuLoadAddStridedInputs(
    const int i1_block,
    const int thr_load_row_off,
    const int thr_load_col_off,
    const int i2_off,
    const int row_stride,
    U* warp_buf1,
    U* warp_buf2,
    const T* input,
Masaki Kozuki's avatar
Masaki Kozuki committed
506
    const V* dout,
507
508
509
    const int i1_end,
    const int n2,
    const U* __restrict__ mean,
510
511
    const U* __restrict__ invvar,
    bool rms_only
512
513
514
515
    )
{
  int i1 = i1_block+thr_load_row_off;
  if (i1 < i1_end) {
516
517
518
519
    U curr_mean;
    if (!rms_only) {
      curr_mean = mean[i1];
    }
520
521
522
523
524
525
526
    U curr_invvar = invvar[i1];
    for (int k = 0;  k < blockDim.y;  ++k) {
      int i2 = i2_off + k;
      int load_idx = i1*n2+i2;
      int write_idx = thr_load_row_off*row_stride+thr_load_col_off+k;
      if (i2<n2) {
        U curr_input = static_cast<U>(input[load_idx]);
Masaki Kozuki's avatar
Masaki Kozuki committed
527
        U curr_dout = static_cast<U>(dout[load_idx]);
528
529
530
531
532
533
        if (!rms_only) {
          warp_buf1[write_idx] += curr_dout;
          warp_buf2[write_idx] += curr_dout * (curr_input - curr_mean) * curr_invvar;
        } else {
          warp_buf2[write_idx] += curr_dout * (curr_input) * curr_invvar;
        }
534
535
536
537
538
      }
    }
  }
}

539

Masaki Kozuki's avatar
Masaki Kozuki committed
540
template<typename T, typename U, typename V> __global__
541
void cuComputePartGradGammaBeta(
Masaki Kozuki's avatar
Masaki Kozuki committed
542
    const V* __restrict__ dout,
543
544
545
546
547
548
549
    const T* __restrict__ input,
    const int n1,
    const int n2,
    const U* __restrict__ mean,
    const U* __restrict__ invvar,
    U epsilon,
    U* part_grad_gamma,
550
551
    U* part_grad_beta,
    bool rms_only)
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
{
    const int numsegs_n1 = (n1+blockDim.y*blockDim.y-1) / (blockDim.y*blockDim.y);
    const int segs_per_block = (numsegs_n1 + gridDim.y - 1) / gridDim.y;
    const int i1_beg = blockIdx.y * segs_per_block * blockDim.y*blockDim.y;
    const int i1_beg_plus_one = (blockIdx.y+1) * segs_per_block * blockDim.y*blockDim.y;
    const int i1_end = i1_beg_plus_one < n1 ? i1_beg_plus_one : n1;
    const int row_stride = blockDim.x+1;
    const int thr_load_col_off = (threadIdx.x*blockDim.y)&(blockDim.x-1);
    const int thr_load_row_off = (threadIdx.x*blockDim.y)/blockDim.x + threadIdx.y*blockDim.y;
    const int i2_off = blockIdx.x * blockDim.x + thr_load_col_off;
    SharedMemory<U> shared;
    U* buf = shared.getPointer(); // buf has at least blockDim.x * blockDim.y * blockDim.y + (blockDim.y - 1)*(blockDim.x/blockDim.y) elements
    U* warp_buf1 = (U*)buf;
    U* warp_buf2 = warp_buf1 + blockDim.y * blockDim.y * row_stride;
    // compute partial sums from strided inputs
    // do this to increase number of loads in flight
568
    cuLoadWriteStridedInputs(i1_beg,thr_load_row_off,thr_load_col_off,i2_off,row_stride,warp_buf1,warp_buf2,input,dout,i1_end,n2,mean,invvar, rms_only);
569
    for (int i1_block = i1_beg+blockDim.y*blockDim.y;  i1_block < i1_end;  i1_block+=blockDim.y*blockDim.y) {
570
      cuLoadAddStridedInputs(i1_block,thr_load_row_off,thr_load_col_off,i2_off,row_stride,warp_buf1,warp_buf2,input,dout,i1_end,n2,mean,invvar, rms_only);
571
572
573
574
575
576
577
578
579
    }
    __syncthreads();
    // inter-warp reductions
    // sum within each warp
    U acc1 = U(0);
    U acc2 = U(0);
    for (int k = 0;  k < blockDim.y;  ++k) {
      int row1 = threadIdx.y + k*blockDim.y;
      int idx1 = row1*row_stride + threadIdx.x;
580
581
582
      if (!rms_only) {
        acc1 += warp_buf1[idx1];
      }
583
584
      acc2 += warp_buf2[idx1];
    }
585
586
587
    if (!rms_only) {
      warp_buf1[threadIdx.y*row_stride+threadIdx.x] = acc1;
    }
588
589
590
591
592
593
    warp_buf2[threadIdx.y*row_stride+threadIdx.x] = acc2;
    __syncthreads();
    // sum all warps
    for (int offset = blockDim.y/2;  offset > 1;  offset /= 2) {
      if (threadIdx.y < offset) {
        int row1 = threadIdx.y;
Masaki Kozuki's avatar
Masaki Kozuki committed
594
595
596
        int row2 = threadIdx.y + offset;
        int idx1 = row1*row_stride + threadIdx.x;
        int idx2 = row2*row_stride + threadIdx.x;
597
598
599
        if (!rms_only) {
          warp_buf1[idx1] += warp_buf1[idx2];
        }
Masaki Kozuki's avatar
Masaki Kozuki committed
600
        warp_buf2[idx1] += warp_buf2[idx2];
601
602
603
604
605
606
607
608
609
      }
      __syncthreads();
    }
    int i2 = blockIdx.x * blockDim.x + threadIdx.x;
    if (threadIdx.y == 0 && i2 < n2) {
      int row1 = threadIdx.y;
      int row2 = threadIdx.y + 1;
      int idx1 = row1*row_stride + threadIdx.x;
      int idx2 = row2*row_stride + threadIdx.x;
610
611
612
      if (!rms_only) {
        part_grad_beta[blockIdx.y*n2+i2] = warp_buf1[idx1] + warp_buf1[idx2];
      }
613
614
615
616
      part_grad_gamma[blockIdx.y*n2+i2] = warp_buf2[idx1] + warp_buf2[idx2];
    }
}

Masaki Kozuki's avatar
Masaki Kozuki committed
617
template<typename U, typename V> __global__
618
619
620
621
622
623
void cuComputeGradGammaBeta(
    const U* part_grad_gamma,
    const U* part_grad_beta,
    const int part_size,
    const int n1,
    const int n2,
Masaki Kozuki's avatar
Masaki Kozuki committed
624
    V* grad_gamma,
625
626
    V* grad_beta,
    bool rms_only)
627
628
629
{
    // sum partial gradients for gamma and beta
    SharedMemory<U> shared;
Masaki Kozuki's avatar
Masaki Kozuki committed
630
    U* buf = shared.getPointer();
631
632
633
634
635
636
637
638
639
640
    int i2 = blockIdx.x * blockDim.x + threadIdx.x;
    if (i2 < n2) {
      // each warp does sequential reductions until reduced part_size is num_warps
      int num_warp_reductions = part_size / blockDim.y;
      U sum_gamma = U(0);
      U sum_beta = U(0);
      const U* part_grad_gamma_ptr = part_grad_gamma + threadIdx.y * num_warp_reductions * n2 + i2;
      const U* part_grad_beta_ptr = part_grad_beta + threadIdx.y * num_warp_reductions * n2 + i2;
      for (int warp_offset = 0;  warp_offset < num_warp_reductions;  ++warp_offset) {
        sum_gamma += part_grad_gamma_ptr[warp_offset*n2];
641
642
643
        if (!rms_only) {
          sum_beta += part_grad_beta_ptr[warp_offset*n2];
        }
644
645
646
647
648
649
650
651
      }
      // inter-warp reductions
      const int nbsize3 = blockDim.x * blockDim.y / 2;
      for (int offset = blockDim.y/2;  offset >= 1;  offset /= 2) {
        // top half write to shared memory
        if (threadIdx.y >= offset && threadIdx.y < 2*offset) {
          const int write_idx = (threadIdx.y - offset) * blockDim.x + threadIdx.x;
          buf[write_idx] = sum_gamma;
652
653
654
          if (!rms_only) {
            buf[write_idx+nbsize3] = sum_beta;
          }
655
656
657
658
659
660
        }
        __syncthreads();
        // bottom half sums
        if (threadIdx.y < offset) {
          const int read_idx = threadIdx.y * blockDim.x + threadIdx.x;
          sum_gamma += buf[read_idx];
661
662
663
          if (!rms_only) {
            sum_beta += buf[read_idx+nbsize3];
          }
664
665
666
667
668
669
        }
        __syncthreads();
      }
      // write out fully summed gradients
      if (threadIdx.y == 0) {
        grad_gamma[i2] = sum_gamma;
670
671
672
        if (!rms_only) {
          grad_beta[i2] = sum_beta;
        }
673
674
675
676
      }
    }
}

677

Masaki Kozuki's avatar
Masaki Kozuki committed
678
template<typename T, typename U, typename V> __global__
679
void cuComputeGradInput(
Masaki Kozuki's avatar
Masaki Kozuki committed
680
    const V* __restrict__ dout,
681
682
683
684
685
686
    const T* __restrict__ input,
    const int n1,
    const int n2,
    const U* __restrict__ mean,
    const U* __restrict__ invvar,
    U epsilon,
Masaki Kozuki's avatar
Masaki Kozuki committed
687
    const V* gamma,
688
689
    T* grad_input,
    bool rms_only)
690
{
691
  for (auto i1=blockIdx.y; i1 < n1; i1 += gridDim.y) {
692
693
    U sum_loss1 = U(0);
    U sum_loss2 = U(0);
694
695
696
697
    U c_mean;
    if (!rms_only) {
      c_mean = mean[i1];
    }
698
699
    const U c_invvar = invvar[i1];
    const T* k_input = input + i1*n2;
Masaki Kozuki's avatar
Masaki Kozuki committed
700
    const V* k_dout = dout + i1*n2;
701
702
703
704
705
706
707
708
    const int numx = blockDim.x * blockDim.y;
    const int thrx = threadIdx.x + threadIdx.y * blockDim.x;
    if (gamma != NULL) {
      int l = 4*thrx;
      for (;  l+3 < n2;  l+=4*numx) {
        for (int k = 0;  k < 4;  ++k) {
          const U c_h = static_cast<U>(k_input[l+k]);
          const U c_loss = static_cast<U>(k_dout[l+k]);
709
710
711
712
713
714
          if (!rms_only) {
            sum_loss1 += c_loss * gamma[l+k];
            sum_loss2 += c_loss * gamma[l+k] * (c_h - c_mean) * c_invvar;
          } else {
            sum_loss2 += c_loss * gamma[l+k] * (c_h) * c_invvar;
          }
715
716
717
718
719
        }
      }
      for (;  l < n2;  ++l) {
        const U c_h = static_cast<U>(k_input[l]);
        const U c_loss = static_cast<U>(k_dout[l]);
720
721
722
723
724
725
726
        if (!rms_only) {
          sum_loss1 += c_loss * gamma[l];
          sum_loss2 += c_loss * gamma[l] * (c_h - c_mean) * c_invvar;
        } else {
          sum_loss2 += c_loss * gamma[l] * (c_h) * c_invvar;
        }

727
728
729
730
731
732
733
      }
    } else {
      int l = 4*thrx;
      for (;  l+3 < n2;  l+=4*numx) {
        for (int k = 0;  k < 4;  ++k) {
          const U c_h = static_cast<U>(k_input[l+k]);
          const U c_loss = static_cast<U>(k_dout[l+k]);
734
735
736
737
738
739
          if (!rms_only) {
            sum_loss1 += c_loss;
            sum_loss2 += c_loss * (c_h - c_mean) * c_invvar;
          } else {
            sum_loss2 += c_loss * (c_h) * c_invvar;
          }
740
741
742
743
744
        }
      }
      for (;  l < n2;  ++l) {
        const U c_h = static_cast<U>(k_input[l]);
        const U c_loss = static_cast<U>(k_dout[l]);
745
746
747
748
749
750
        if (!rms_only) {
          sum_loss1 += c_loss;
          sum_loss2 += c_loss * (c_h - c_mean) * c_invvar;
        } else {
          sum_loss2 += c_loss * (c_h) * c_invvar;
        }
751
752
753
754
      }
    }
    // intra-warp reductions
    for (int mask = blockDim.x/2;  mask > 0;  mask /= 2) {
755
756
757
      if (!rms_only) {
        sum_loss1 += WARP_SHFL_XOR(sum_loss1, mask);
      }
758
759
760
761
762
      sum_loss2 += WARP_SHFL_XOR(sum_loss2, mask);
    }
    // inter-warp reductions
    if (blockDim.y > 1) {
      SharedMemory<U> shared;
Masaki Kozuki's avatar
Masaki Kozuki committed
763
      U* buf = shared.getPointer();
764
765
766
767
      for (int offset = blockDim.y/2;  offset > 0;  offset /= 2) {
        // upper half of warps write to shared
        if (threadIdx.y >= offset && threadIdx.y < 2*offset) {
          const int wrt_i = (threadIdx.y - offset) * blockDim.x + threadIdx.x;
768
769
770
          if (!rms_only) {
            buf[2*wrt_i] = sum_loss1;
          }
771
772
773
774
775
776
          buf[2*wrt_i+1] = sum_loss2;
        }
        __syncthreads();
        // lower half merges
        if (threadIdx.y < offset) {
          const int read_i = threadIdx.y * blockDim.x + threadIdx.x;
777
778
779
          if (!rms_only) {
            sum_loss1 += buf[2*read_i];
          }
780
781
782
783
784
          sum_loss2 += buf[2*read_i+1];
        }
        __syncthreads();
      }
      if (threadIdx.y == 0) {
785
786
787
        if (!rms_only) {
          buf[2*threadIdx.x] = sum_loss1;
        }
788
789
790
791
        buf[2*threadIdx.x+1] = sum_loss2;
      }
      __syncthreads();
      if (threadIdx.y !=0) {
792
793
794
        if (!rms_only) {
          sum_loss1 = buf[2*threadIdx.x];
        }
795
        sum_loss2 = buf[2*threadIdx.x+1];
Masaki Kozuki's avatar
Masaki Kozuki committed
796
      }
797
798
799
800
801
802
803
804
805
806
    }
    // all threads now have the two sums over l
    U fH = (U)n2;
    U term1 = (U(1) / fH) * c_invvar;
    T* k_grad_input = grad_input + i1*n2;
    if (gamma != NULL) {
      for (int l = thrx;  l < n2;  l+=numx) {
        const U c_h = static_cast<U>(k_input[l]);
        const U c_loss = static_cast<U>(k_dout[l]);
        U f_grad_input = fH * c_loss * gamma[l];
807
808
809
810
811
812
        if (!rms_only) {
          f_grad_input -= sum_loss1;
          f_grad_input -= (c_h - c_mean) * c_invvar * sum_loss2;
        } else {
          f_grad_input -= (c_h) * c_invvar * sum_loss2;
        }
813
814
815
816
817
818
819
820
        f_grad_input *= term1;
        k_grad_input[l] = static_cast<T>(f_grad_input);
      }
    } else {
      for (int l = thrx;  l < n2;  l+=numx) {
        const U c_h = static_cast<U>(k_input[l]);
        const U c_loss = static_cast<U>(k_dout[l]);
        U f_grad_input = fH * c_loss;
821
822
823
824
825
826
        if (!rms_only) {
          f_grad_input -= sum_loss1;
          f_grad_input -= (c_h - c_mean) * c_invvar * sum_loss2;
        } else {
          f_grad_input -= (c_h) * c_invvar * sum_loss2;
        }
827
828
829
830
        f_grad_input *= term1;
        k_grad_input[l] = static_cast<T>(f_grad_input);
      }
    }
eqy's avatar
eqy committed
831
832
    // prevent race where buf is written again before reads are done
    __syncthreads();
833
834
835
  }
}

836

Masaki Kozuki's avatar
Masaki Kozuki committed
837
template<typename T, typename U, typename V=T>
838
void HostApplyLayerNorm(
Masaki Kozuki's avatar
Masaki Kozuki committed
839
    V* output,
840
841
842
843
844
845
    U* mean,
    U* invvar,
    const T* input,
    int n1,
    int n2,
    double epsilon,
Masaki Kozuki's avatar
Masaki Kozuki committed
846
847
    const V* gamma,
    const V* beta
848
849
850
851
    )
{
    auto stream = at::cuda::getCurrentCUDAStream().stream();
    const dim3 threads(32,4,1);
852
853
    const uint64_t maxGridY = at::cuda::getCurrentDeviceProperties()->maxGridSize[1];
    const dim3 blocks(1, std::min((uint64_t)n1, maxGridY), 1);
Masaki Kozuki's avatar
Masaki Kozuki committed
854
855
    int nshared =
        threads.y > 1 ?
856
857
            threads.y*sizeof(U)+(threads.y/2)*sizeof(U) :
            0;
858
    cuApplyLayerNorm<<<blocks, threads, nshared, stream>>>(
Masaki Kozuki's avatar
Masaki Kozuki committed
859
      output, mean, invvar, input, n1, n2, U(epsilon), gamma, beta);
860
861
}

862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
template<typename T, typename U, typename V=T>
void HostApplyRMSNorm(
    V* output,
    U* invvar,
    const T* input,
    int n1,
    int n2,
    double epsilon,
    const V* gamma)
{
    auto stream = at::cuda::getCurrentCUDAStream().stream();
    const dim3 threads(32,4,1);
    const uint64_t maxGridY = at::cuda::getCurrentDeviceProperties()->maxGridSize[1];
    const dim3 blocks(1, std::min((uint64_t)n1, maxGridY), 1);
    int nshared =
        threads.y > 1 ?
            threads.y*sizeof(U)+(threads.y/2)*sizeof(U) :
            0;
    cuApplyRMSNorm<<<blocks, threads, nshared, stream>>>(
      output, invvar, input, n1, n2, U(epsilon), gamma);
}

884
885
886
887
888
889
890
void cuda_layer_norm(
    at::Tensor* output,
    at::Tensor* mean,
    at::Tensor* invvar,
    at::Tensor* input,
    int n1,
    int n2,
891
    #ifdef VERSION_GE_1_1
892
    at::IntArrayRef normalized_shape,
893
894
895
    #else
    at::IntList normalized_shape,
    #endif
896
897
898
899
    at::Tensor* gamma,
    at::Tensor* beta,
    double epsilon)
{
900
    using namespace at;
Masaki Kozuki's avatar
Masaki Kozuki committed
901
902
903
904
905
    DISPATCH_DOUBLE_FLOAT_HALF_AND_BFLOAT_INOUT_TYPES(
        input->scalar_type(), output->scalar_type(), "layer_norm_cuda_kernel",
        using accscalar_t = at::acc_type<scalar_t_in, true>;
        HostApplyLayerNorm<scalar_t_in, accscalar_t, scalar_t_out>(
          output->DATA_PTR<scalar_t_out>(),
906
              mean->DATA_PTR<accscalar_t>(),
Masaki Kozuki's avatar
Masaki Kozuki committed
907
908
909
910
911
912
          invvar->DATA_PTR<accscalar_t>(),
          input->DATA_PTR<scalar_t_in>(),
          n1,n2,
          epsilon,
          gamma != NULL ? gamma->DATA_PTR<scalar_t_out>() : NULL,
          beta != NULL ? beta->DATA_PTR<scalar_t_out>() : NULL);
913
      )
914
915
}

916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
void cuda_rms_norm(
    at::Tensor* output,
    at::Tensor* invvar,
    at::Tensor* input,
    int n1,
    int n2,
    #ifdef VERSION_GE_1_1
    at::IntArrayRef normalized_shape,
    #else
    at::IntList normalized_shape,
    #endif
    at::Tensor* gamma,
    double epsilon)
{
    using namespace at;
    DISPATCH_DOUBLE_FLOAT_HALF_AND_BFLOAT_INOUT_TYPES(
        input->scalar_type(), output->scalar_type(), "rms_norm_cuda_kernel",
        using accscalar_t = at::acc_type<scalar_t_in, true>;
        HostApplyRMSNorm<scalar_t_in, accscalar_t, scalar_t_out>(
          output->DATA_PTR<scalar_t_out>(),
          invvar->DATA_PTR<accscalar_t>(),
          input->DATA_PTR<scalar_t_in>(),
          n1,n2,
          epsilon,
          gamma != NULL ? gamma->DATA_PTR<scalar_t_out>() : NULL);
      )
}


Masaki Kozuki's avatar
Masaki Kozuki committed
945
template<typename T, typename U=float, typename V=T>
946
void HostLayerNormGradient(
Masaki Kozuki's avatar
Masaki Kozuki committed
947
    const V* dout,
948
949
950
951
952
    const U* mean,
    const U* invvar,
    at::Tensor* input,
    int n1,
    int n2,
Masaki Kozuki's avatar
Masaki Kozuki committed
953
954
    const V* gamma,
    const V* beta,
955
956
    double epsilon,
    T* grad_input,
Masaki Kozuki's avatar
Masaki Kozuki committed
957
958
    V* grad_gamma,
    V* grad_beta
959
960
961
962
963
964
965
966
967
968
969
970
    )
{
    auto stream = at::cuda::getCurrentCUDAStream().stream();

    if (gamma != NULL && beta != NULL) {
      // compute grad_gamma(j) and grad_beta(j)
      const int part_size = 16;
      const dim3 threads2(32,4,1);
      const dim3 blocks2((n2+threads2.x-1)/threads2.x,part_size,1);
      const int nshared2_a = 2 * sizeof(U) * threads2.y * threads2.y * (threads2.x + 1);
      const int nshared2_b = threads2.x * threads2.y * sizeof(U);
      const int nshared2 = nshared2_a > nshared2_b ? nshared2_a : nshared2_b;
Masaki Kozuki's avatar
Masaki Kozuki committed
971
972
973
974
975
976
977
      // note (mkozuki): I can hard code part_grad_gamma's dtype as float given that
      // the `cuda_layer_norm_gradient` doesn't support double.
      const auto part_grad_dtype =
        (input->scalar_type() == at::ScalarType::Half || input->scalar_type() == at::ScalarType::BFloat16) ?
        at::ScalarType::Float :
        input->scalar_type();
      at::Tensor part_grad_gamma = at::empty({part_size,n2}, input->options().dtype(part_grad_dtype));
978
979
      at::Tensor part_grad_beta = at::empty_like(part_grad_gamma);
      cuComputePartGradGammaBeta<<<blocks2, threads2, nshared2, stream>>>(
980
981
982
983
984
985
986
987
988
                      dout,
                      input->DATA_PTR<T>(),
                      n1,n2,
                      mean,
                      invvar,
                      U(epsilon),
                      part_grad_gamma.DATA_PTR<U>(),
                      part_grad_beta.DATA_PTR<U>(),
                      false);
989
990
991
992
993

      const dim3 threads3(32,8,1);
      const dim3 blocks3((n2+threads2.x-1)/threads2.x,1,1);
      const int nshared3 = threads3.x * threads3.y * sizeof(U);
      cuComputeGradGammaBeta<<<blocks3, threads3, nshared3, stream>>>(
994
995
996
997
998
999
1000
                      part_grad_gamma.DATA_PTR<U>(),
                      part_grad_beta.DATA_PTR<U>(),
                      part_size,
                      n1,n2,
                      grad_gamma,
                      grad_beta,
                      false);
1001
1002
1003
    }

    // compute grad_input
1004
1005
    const uint64_t maxGridY = at::cuda::getCurrentDeviceProperties()->maxGridSize[1];
    const dim3 blocks1(1, std::min((uint64_t)n1, maxGridY), 1);
1006
1007
    const dim3 threads1(32,4,1);
    int nshared =
1008
1009
1010
            threads1.y > 1 ?
            threads1.y*threads1.x*sizeof(U) :
            0;
1011
1012
    cuComputeGradInput<<<blocks1, threads1, nshared, stream>>>(
            dout,
mcarilli's avatar
mcarilli committed
1013
            input->DATA_PTR<T>(),
1014
1015
1016
1017
1018
            n1,n2,
            mean,
            invvar,
            U(epsilon),
            gamma,
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
            grad_input,
            false);
}

template<typename T, typename U=float, typename V=T>
void HostRMSNormGradient(
    const V* dout,
    const U* invvar,
    at::Tensor* input,
    int n1,
    int n2,
    const V* gamma,
    double epsilon,
    T* grad_input,
    V* grad_gamma)
{
    auto stream = at::cuda::getCurrentCUDAStream().stream();

    if (gamma != NULL) {
      const int part_size = 16;
      const dim3 threads2(32,4,1);
      const dim3 blocks2((n2+threads2.x-1)/threads2.x,part_size,1);
      const int nshared2_a = 2 * sizeof(U) * threads2.y * threads2.y * (threads2.x + 1);
      const int nshared2_b = threads2.x * threads2.y * sizeof(U);
      const int nshared2 = nshared2_a > nshared2_b ? nshared2_a : nshared2_b;
      // note (mkozuki): I can hard code part_grad_gamma's dtype as float given that
      // the `cuda_layer_norm_gradient` doesn't support double.
      const auto part_grad_dtype =
        (input->scalar_type() == at::ScalarType::Half || input->scalar_type() == at::ScalarType::BFloat16) ?
        at::ScalarType::Float :
        input->scalar_type();
      at::Tensor part_grad_gamma = at::empty({part_size,n2}, input->options().dtype(part_grad_dtype));
      cuComputePartGradGammaBeta<<<blocks2, threads2, nshared2, stream>>>(
                      dout,
                      input->DATA_PTR<T>(),
                      n1,n2,
                      invvar, // unused
                      invvar,
                      U(epsilon),
                      part_grad_gamma.DATA_PTR<U>(),
                      part_grad_gamma.DATA_PTR<U>(), /* unused */
                      true);

      const dim3 threads3(32,8,1);
      const dim3 blocks3((n2+threads2.x-1)/threads2.x,1,1);
      const int nshared3 = threads3.x * threads3.y * sizeof(U);
      cuComputeGradGammaBeta<<<blocks3, threads3, nshared3, stream>>>(
                      part_grad_gamma.DATA_PTR<U>(),
                      part_grad_gamma.DATA_PTR<U>(), /* unused */
                      part_size,
                      n1,n2,
                      grad_gamma,
                      grad_gamma, /* unused */
                      true);
    }

    // compute grad_input
    const uint64_t maxGridY = at::cuda::getCurrentDeviceProperties()->maxGridSize[1];
    const dim3 blocks1(1, std::min((uint64_t)n1, maxGridY), 1);
    const dim3 threads1(32,4,1);
    int nshared =
            threads1.y > 1 ?
            threads1.y*threads1.x*sizeof(U) :
            0;
    cuComputeGradInput<<<blocks1, threads1, nshared, stream>>>(
            dout,
            input->DATA_PTR<T>(),
            n1,n2,
            invvar, /* unused */
            invvar,
            U(epsilon),
            gamma,
            grad_input,
            true);
1093
1094
1095
1096
1097
1098
1099
1100
1101
}

void cuda_layer_norm_gradient(
    at::Tensor* dout,
    at::Tensor* mean,
    at::Tensor* invvar,
    at::Tensor* input,
    int n1,
    int n2,
1102
    #ifdef VERSION_GE_1_1
1103
    at::IntArrayRef normalized_shape,
1104
1105
1106
    #else
    at::IntList normalized_shape,
    #endif
1107
1108
1109
1110
1111
1112
1113
    at::Tensor* gamma,
    at::Tensor* beta,
    double epsilon,
    at::Tensor* grad_input,
    at::Tensor* grad_gamma,
    at::Tensor* grad_beta)
{
1114
    using namespace at;
Masaki Kozuki's avatar
Masaki Kozuki committed
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
    // we can do away with `accscalar_t` as there're only three dtypes: fp32, fp16, bf16
    DISPATCH_FLOAT_HALF_AND_BFLOAT_INOUT_TYPES(
      input->scalar_type(), gamma == NULL ? input->scalar_type() :  gamma->scalar_type(), "cuComputeGradInput",
      using accscalar_t = at::acc_type<scalar_t_in, true>;
      HostLayerNormGradient(
        dout->DATA_PTR<scalar_t_out>(),
        mean->DATA_PTR<accscalar_t>(),
        invvar->DATA_PTR<accscalar_t>(),
        input,
        n1,n2,
ngimel's avatar
ngimel committed
1125
1126
            // TMJ pass NULL argument for gamma, beta, grad_gamma and grad_beta
            // if gamma Tensor is NULL on input.
Masaki Kozuki's avatar
Masaki Kozuki committed
1127
1128
1129
1130
1131
1132
1133
        gamma != NULL ? gamma->DATA_PTR<scalar_t_out>() : NULL,
        gamma != NULL ? beta->DATA_PTR<scalar_t_out>() : NULL,
        epsilon,
        grad_input->DATA_PTR<scalar_t_in>(),
        gamma != NULL ? grad_gamma->DATA_PTR<scalar_t_out>() : NULL,
        gamma != NULL ? grad_beta->DATA_PTR<scalar_t_out>() : NULL);
    )
1134
}
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170

void cuda_rms_norm_gradient(
    at::Tensor* dout,
    at::Tensor* invvar,
    at::Tensor* input,
    int n1,
    int n2,
    #ifdef VERSION_GE_1_1
    at::IntArrayRef normalized_shape,
    #else
    at::IntList normalized_shape,
    #endif
    at::Tensor* gamma,
    double epsilon,
    at::Tensor* grad_input,
    at::Tensor* grad_gamma)
{
    using namespace at;
    // we can do away with `accscalar_t` as there're only three dtypes: fp32, fp16, bf16
    // DISPATCH_FLOAT_HALF_AND_BFLOAT_INOUT_TYPES(
    DISPATCH_DOUBLE_FLOAT_HALF_AND_BFLOAT_INOUT_TYPES(
      input->scalar_type(), gamma == NULL ? input->scalar_type() :  gamma->scalar_type(), "cuComputeGradInputRMS",
      using accscalar_t = at::acc_type<scalar_t_in, true>;
      HostRMSNormGradient(
        dout->DATA_PTR<scalar_t_out>(),
        invvar->DATA_PTR<accscalar_t>(),
        input,
        n1,n2,
            // TMJ pass NULL argument for gamma, beta, grad_gamma and grad_beta
            // if gamma Tensor is NULL on input.
        gamma != NULL ? gamma->DATA_PTR<scalar_t_out>() : NULL,
        epsilon,
        grad_input->DATA_PTR<scalar_t_in>(),
        gamma != NULL ? grad_gamma->DATA_PTR<scalar_t_out>() : NULL);
    )
}