welford.cu 47.1 KB
Newer Older
jjsjann123's avatar
jjsjann123 committed
1
2
3
4
5
6
7
8
9
10
#include <iostream>
#include <ATen/ATen.h>
#include <ATen/AccumulateType.h>
#include <ATen/cuda/CUDAContext.h>

#include <cuda.h>
#include <cuda_runtime.h>

#include <vector>

11
#include "type_shim.h"
12
#include "compat.h"
13

jjsjann123's avatar
jjsjann123 committed
14
15
16
17

__device__ __forceinline__ int lastpow2(int n)
{
  int out = 1 << (31 - __clz(n));
Jie's avatar
Jie committed
18
  if(n == out)
jjsjann123's avatar
jjsjann123 committed
19
20
21
22
23
    out >>= 1;
  return out;
}

__host__ __forceinline__ int h_next_pow2(unsigned int n) {
Marek Kolodziej's avatar
Marek Kolodziej committed
24
    n--;
jjsjann123's avatar
jjsjann123 committed
25
26
27
28
29
    n |= (n >>  1);
    n |= (n >>  2);
    n |= (n >>  4);
    n |= (n >>  8);
    n |= (n >> 16);
Marek Kolodziej's avatar
Marek Kolodziej committed
30
    return ++n;
jjsjann123's avatar
jjsjann123 committed
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
}

__host__ __forceinline__ int h_last_pow2(unsigned int n) {
    n |= (n >>  1);
    n |= (n >>  2);
    n |= (n >>  4);
    n |= (n >>  8);
    n |= (n >> 16);
    return n - (n >> 1);
}


#define WARP_SIZE 32

template<typename T>
__device__ __forceinline__ T warp_reduce_sum(T val)
{
  #pragma unroll
  for(int i = WARP_SIZE/2; i > 0; i >>= 1)
    val = val + __shfl_down_sync(0xffffffff, val, i);
  return val;
}

template<typename T>
__device__ __forceinline__ T reduce_block(T *x, T val)
{
  int tid = threadIdx.y*blockDim.x + threadIdx.x;
  int blockSize = blockDim.x * blockDim.y;

  if (blockSize > 32) {
    val = warp_reduce_sum(val);
    if (tid % WARP_SIZE == 0)
      x[tid/WARP_SIZE] = val;

    __syncthreads();

    val = (tid < blockSize / WARP_SIZE? x[tid%WARP_SIZE] : T(0));
  }

  if(tid/WARP_SIZE==0) val = warp_reduce_sum(val);

  return val;
}

Jie's avatar
Jie committed
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
#define ELEMENTS_PER_ITER 4 // enables concurrency within each thread to hide latency
#define ELEMENTS_PER_THREAD 16
#define OPTIMAL_TILE_W 32
#define MAX_H_BLOCK 128
#define MAX_BLOCK_SIZE 512

__host__ int div_ru(int x, int y) {
  return h_last_pow2(1 + (x-1)/y);
}

__host__ void flexible_launch_configs(
      const int reduction,
      const int stride,
      dim3 &block,
      dim3 &grid,
      const bool coop_flag = false) {
  int block_x = std::min(h_last_pow2(stride), OPTIMAL_TILE_W);
  int block_y = std::min(h_last_pow2(div_ru(reduction , ELEMENTS_PER_THREAD)),
                         MAX_BLOCK_SIZE / block_x);
  if (block_x * block_y != MAX_BLOCK_SIZE) {
    block_x = std::min(h_last_pow2(stride), MAX_BLOCK_SIZE / block_y);
  }

  int grid_x = div_ru(stride, block_x);
  int grid_y = std::min(div_ru(reduction, block_y * ELEMENTS_PER_THREAD), MAX_H_BLOCK);
  if (coop_flag) {
    // it's not worth having a grid reduction if the reduction dimension is not big enough
    grid_y = grid_y < 8 ? 1 : grid_y;
  }

  block.x = block_x;
  block.y = block_y;
  block.z = 1;
  grid.x = grid_x;
  grid.y = grid_y;
  grid.z = 1;
}

template<typename T, typename C>
__device__ __forceinline__ void welford_merge_element(C& count,
                                                      T& mean,
                                                      T& m2n,
                                                      const C& num_new,
                                                      const T& mean_new,
                                                      const T& m2n_new) {
      T factor = T(1.0) / max(1, (count + num_new));
      T delta0 = mean - mean_new;
      mean = (mean_new * num_new + mean * count) * factor;
      m2n += m2n_new + delta0 * delta0 * num_new * count * factor;
      count += num_new;
}
jjsjann123's avatar
jjsjann123 committed
126
127
128
129
130
131
132
133
134

template<typename T>
__device__ __forceinline__ void warp_reduce_mean_m2n(T &mean, T &m2n, int &num)
{
  #pragma unroll
  for(int i = WARP_SIZE/2; i > 0; i >>= 1) {
    auto num_new = __shfl_down_sync(0xffffffff, num, i);
    auto mean_new = __shfl_down_sync(0xffffffff, mean, i);
    auto m2n_new = __shfl_down_sync(0xffffffff, m2n, i);
Jie's avatar
Jie committed
135
    welford_merge_element(num, mean, m2n, num_new, mean_new, m2n_new);
jjsjann123's avatar
jjsjann123 committed
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
  }
}

template <typename T>
__device__ void welford_reduce_mean_m2n(
      T* __restrict__ x,
      int* __restrict__ count,
      T &mean,
      T &m2n,
      int &num,
      int block_size,
      int thread_id)
{
  int lane = thread_id % WARP_SIZE;
  int wid = thread_id / WARP_SIZE;

  if (block_size > 32) {
    warp_reduce_mean_m2n(mean, m2n, num);
    if (lane == 0) {
      x[wid*2] = mean;
      x[wid*2+1] = m2n;
      count[wid] = num;
    }
    __syncthreads();

    if (wid == 0) {
      mean = (thread_id < block_size / WARP_SIZE)? x[lane*2] : T(0);
      m2n = (thread_id < block_size / WARP_SIZE)? x[lane*2+1] : T(0);
      num = (thread_id < block_size / WARP_SIZE)? count[lane] : int(0);
    }
  }

  if (wid==0) warp_reduce_mean_m2n(mean, m2n, num);

  return;
}

// return spatial size for NC+ Tensors
__host__ int get_tensor_spatial_size(const at::Tensor& input)
{
  auto space_size = input.size(2);
  for (int i = 3; i < input.ndimension(); i++) {
    space_size *= input.size(i);
  }
  return space_size;
}

// promote accumulation scalar type. promote half to float.
__host__ at::ScalarType promote_scalartype(const at::Tensor& input)
{
186
187
  return input.scalar_type() == at::ScalarType::Half ?
           at::ScalarType::Float : input.scalar_type();
jjsjann123's avatar
jjsjann123 committed
188
189
190
191
192
}

// return single element size, optional accumulation type promotion.
__host__ size_t get_element_data_size(const at::Tensor& input, bool accumulation = false)
{
193
  auto scalar_type = accumulation ? promote_scalartype(input) : input.scalar_type();
jjsjann123's avatar
jjsjann123 committed
194
195
196
  return at::elementSize(scalar_type);
}

Jie's avatar
Jie committed
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
template<typename T, typename C>
__device__ __forceinline__ void welford_merge_block_vertical(C& count,
                                                             T& mean,
                                                             T& m2n,
                                                             C* shmem_count,
                                                             T* shmem_mean,
                                                             T* shmem_m2n) {
  // write to shared memory
  auto address_base = threadIdx.x + threadIdx.y * blockDim.x;
  shmem_mean[address_base] = mean;
  shmem_m2n[address_base] = m2n;
  shmem_count[address_base] = count;

#pragma unroll
  for (int offset = blockDim.y/2; offset > 0; offset >>= 1) {
    __syncthreads();
    if (threadIdx.y < offset && threadIdx.y + offset < blockDim.y) {
      auto address = address_base + offset * blockDim.x;
      // read shared memory back to register for reduction
      auto num_new = shmem_count[address];
      auto mean_new = shmem_mean[address];
      auto m2n_new = shmem_m2n[address];

      welford_merge_element(count, mean, m2n, num_new, mean_new, m2n_new);

      // last write is not necessary
      shmem_mean[address_base] = mean;
      shmem_m2n[address_base] = m2n;
      shmem_count[address_base] = count;
    }
  }
}

template<typename T>
__device__ __forceinline__ void merge_block_vertical(T& sum_dy,
                                                     T& sum_dy_xmu,
                                                     T* shmem_sum_dy,
                                                     T* shmem_sum_dy_xmu) {
  // write to shared memory
  auto address_base = threadIdx.x + threadIdx.y * blockDim.x;
  shmem_sum_dy[address_base] = sum_dy;
  shmem_sum_dy_xmu[address_base] = sum_dy_xmu;

#pragma unroll
  for (int offset = blockDim.y/2; offset > 0; offset >>= 1) {
    __syncthreads();
    if (threadIdx.y < offset && threadIdx.y + offset < blockDim.y) {
      auto address = address_base + offset * blockDim.x;

      sum_dy += shmem_sum_dy[address];
      sum_dy_xmu += shmem_sum_dy_xmu[address];

      // last write is not necessary
      shmem_sum_dy[address_base] = sum_dy;
      shmem_sum_dy_xmu[address_base] = sum_dy_xmu;
    }
  }
}

jjsjann123's avatar
jjsjann123 committed
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278

// welford kernel calculating mean/biased_variance/unbiased_variance
template <typename scalar_t, typename accscalar_t, typename outscalar_t>
__global__ void welford_kernel(
      const scalar_t* __restrict__ input,
      outscalar_t* __restrict__ out_mean,
      outscalar_t* __restrict__ out_var_biased,
      const int bs,
      const int fs,
      const int ss) {
  int block_size = blockDim.x * blockDim.y;
  int count = 0;
  accscalar_t x_mean = accscalar_t(0);
  accscalar_t m_2_n = accscalar_t(0);

  int thread_id = threadIdx.y*blockDim.x + threadIdx.x;

  for (int batch_id = threadIdx.y; batch_id < bs; batch_id += blockDim.y) {
    int input_base = blockIdx.x*ss + batch_id*ss*fs;
    // sequential welford
    for (int offset = threadIdx.x; offset < ss ; offset += blockDim.x) {
      count++;
      auto x_n = static_cast<accscalar_t>(input[offset+input_base]);
Jie's avatar
Jie committed
279
280
281
      auto d = x_n - x_mean;
      x_mean += d / count;
      m_2_n += d * (x_n - x_mean);
jjsjann123's avatar
jjsjann123 committed
282
283
284
    }
  }

Jie's avatar
Jie committed
285
286
287
  static __shared__ int s_mem[160];
  accscalar_t* s_mem_ac = (accscalar_t*) &s_mem[32];

jjsjann123's avatar
jjsjann123 committed
288
289
290
291
292
293
294
295
296
297
298
299
300
  welford_reduce_mean_m2n<accscalar_t>(s_mem_ac, s_mem, x_mean, m_2_n, count, block_size, thread_id);

  if (thread_id == 0) {
    out_mean[blockIdx.x] = static_cast<outscalar_t>(x_mean);
    out_var_biased[blockIdx.x] = static_cast<outscalar_t>(m_2_n/count);
  }
}

// elementwise BN kernel
template <typename scalar_t, typename accscalar_t, typename layerscalar_t>
__global__ void batchnorm_forward_kernel(
      const scalar_t* __restrict__ input,
      const accscalar_t* __restrict__ mean,
Jie's avatar
Jie committed
301
      const accscalar_t* __restrict__ inv_std,
jjsjann123's avatar
jjsjann123 committed
302
303
304
305
      const layerscalar_t* __restrict__ weight,
      const layerscalar_t* __restrict__ shift,
      scalar_t* __restrict__ out,
      const int ss,
Jie's avatar
Jie committed
306
      const int bs) {
jjsjann123's avatar
jjsjann123 committed
307
  auto m_c = mean[blockIdx.x];
Jie's avatar
Jie committed
308
  auto inv_std_c = inv_std[blockIdx.x];
309
310
  auto w_c = weight == NULL ? accscalar_t(1.0) : static_cast<accscalar_t>(weight[blockIdx.x]);
  auto s_c = shift == NULL ? accscalar_t(0.0) : static_cast<accscalar_t>(shift[blockIdx.x]);
jjsjann123's avatar
jjsjann123 committed
311

Jie's avatar
Jie committed
312
313
314
315
316
  for (int batch_offset = blockIdx.y*blockDim.y + threadIdx.y; batch_offset < bs; batch_offset += gridDim.y*blockDim.y) {
    int address_base = blockIdx.x*ss + batch_offset*gridDim.x*ss;
    for (int offset = threadIdx.x + blockIdx.z*blockDim.x; offset < ss ; offset+= gridDim.z*blockDim.x) {
      out[address_base+offset] = static_cast<scalar_t>(w_c * (static_cast<accscalar_t>(input[address_base+offset]) - m_c ) * inv_std_c + s_c);
    }
jjsjann123's avatar
jjsjann123 committed
317
318
319
320
321
322
323
324
325
326
327
328
  }
}

// Backward BN kernel, calculates grad_bias, grad_weight as well as intermediate
// results to calculating grad_input.
// Breaking the grad_input to two step to support sync BN, which requires all
// reduce of the intermediate results across processes.
template <typename scalar_t, typename accscalar_t, typename layerscalar_t>
__global__ void reduce_bn_kernel(
      const scalar_t* __restrict__ input,
      const scalar_t* __restrict__ grad_output,
      const accscalar_t* __restrict__ mean,
Jie's avatar
Jie committed
329
      const accscalar_t* __restrict__ inv_std,
jjsjann123's avatar
jjsjann123 committed
330
331
332
333
334
335
      accscalar_t* __restrict__ mean_dy,
      accscalar_t* __restrict__ mean_dy_xmu,
      layerscalar_t* __restrict__ grad_weight,
      layerscalar_t* __restrict__ grad_bias,
      const int bs,
      const int fs,
Jie's avatar
Jie committed
336
      const int ss) {
jjsjann123's avatar
jjsjann123 committed
337
338
339
340
341
342
  static __shared__ int s_mem[64];
  int total_item_num = bs * ss;

  int thread_id = threadIdx.y*blockDim.x + threadIdx.x;

  auto r_mean = mean[blockIdx.x];
Jie's avatar
Jie committed
343
  auto factor = inv_std[blockIdx.x];
jjsjann123's avatar
jjsjann123 committed
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371

  // Kahan sum
  accscalar_t sum_dy = 0.0;
  accscalar_t sum_dy_xmu = 0.0;
  accscalar_t sum_dy_c = 0.0;
  accscalar_t sum_dy_xmu_c = 0.0;
  for (int batch_id = threadIdx.y; batch_id < bs; batch_id += blockDim.y) {
    int input_base = blockIdx.x*ss + batch_id*ss*fs;
    for (int offset = threadIdx.x; offset < ss ; offset += blockDim.x) {
      auto e_grad = static_cast<accscalar_t>(grad_output[offset+input_base]);
      auto e_input = static_cast<accscalar_t>(input[offset+input_base]);
      // calculating sum_dy
      auto sum_dy_y = e_grad - sum_dy_c;
      auto sum_dy_t = sum_dy + sum_dy_y;
      sum_dy_c = (sum_dy_t - sum_dy) - sum_dy_y;
      sum_dy = sum_dy_t;

      // calculating sum_dy_xmu
      auto sum_dy_xmu_y = e_grad * (e_input - r_mean) - sum_dy_xmu_c;
      auto sum_dy_xmu_t = sum_dy_xmu + sum_dy_xmu_y;
      sum_dy_xmu_c = (sum_dy_xmu_t - sum_dy_xmu) - sum_dy_xmu_y;
      sum_dy_xmu = sum_dy_xmu_t;
    }
  }

  sum_dy = reduce_block((accscalar_t*)s_mem, sum_dy);
  __syncthreads();
  sum_dy_xmu = reduce_block((accscalar_t*)s_mem, sum_dy_xmu);
Jie's avatar
Jie committed
372

jjsjann123's avatar
jjsjann123 committed
373
  if (thread_id == 0) {
374
375
376
377
378
379
    if (grad_bias != NULL) {
      grad_bias[blockIdx.x] = static_cast<layerscalar_t>(sum_dy);
    }
    if (grad_weight != NULL) {
      grad_weight[blockIdx.x] = static_cast<layerscalar_t>(sum_dy_xmu * factor);
    }
jjsjann123's avatar
jjsjann123 committed
380
381
382
383
384
385
386
387
388
389
390
    mean_dy[blockIdx.x] = sum_dy / total_item_num;
    mean_dy_xmu[blockIdx.x] = sum_dy_xmu / total_item_num;
  }
}

// elementwise backward BN kernel
template <typename scalar_t, typename accscalar_t, typename layerscalar_t>
__global__ void batchnorm_backward_kernel(
      const scalar_t* __restrict__ grad_output,
      const scalar_t* __restrict__ input,
      const accscalar_t* __restrict__ mean,
Jie's avatar
Jie committed
391
      const accscalar_t* __restrict__ inv_std,
jjsjann123's avatar
jjsjann123 committed
392
393
394
395
396
      const layerscalar_t* __restrict__ weight,
      const accscalar_t* __restrict__ mean_dy,
      const accscalar_t* __restrict__ mean_dy_xmu,
      scalar_t* __restrict__ grad_input,
      const int ss,
Jie's avatar
Jie committed
397
      const int bs) {
jjsjann123's avatar
jjsjann123 committed
398
399
  auto m_c = static_cast<accscalar_t>(mean[blockIdx.x]);
  auto m_dy_c = static_cast<accscalar_t>(mean_dy[blockIdx.x]);
Jie's avatar
Jie committed
400
  auto factor_1_c = inv_std[blockIdx.x];
401
  auto factor_2_c = (weight == NULL ? accscalar_t(1.0) : static_cast<accscalar_t>(weight[blockIdx.x])) * factor_1_c;
Jie's avatar
Jie committed
402
  factor_1_c = factor_1_c * factor_1_c * mean_dy_xmu[blockIdx.x];
jjsjann123's avatar
jjsjann123 committed
403

Jie's avatar
Jie committed
404
405
406
  for (int batch_offset = blockIdx.y*blockDim.y+threadIdx.y; batch_offset < bs; batch_offset += gridDim.y*blockDim.y) {
    int address_base = blockIdx.x*ss + batch_offset*gridDim.x*ss;
    for (int offset = threadIdx.x + blockIdx.z*blockDim.x; offset < ss ; offset+= gridDim.z*blockDim.x) {
Jie's avatar
Jie committed
407
      grad_input[address_base+offset] = (static_cast<accscalar_t>(grad_output[address_base+offset]) - m_dy_c - (static_cast<accscalar_t>(input[address_base+offset]) - m_c) * factor_1_c) * factor_2_c;
Jie's avatar
Jie committed
408
    }
jjsjann123's avatar
jjsjann123 committed
409
410
411
  }
}

Jie's avatar
Jie committed
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
// welford kernel for c last tensor calculating mean/biased_variance/unbiased_variance
template
   <typename scalar_t,
    typename accscalar_t,
    typename outscalar_t,
    int PARALLEL_LOADS>
__global__ void
welford_kernel_c_last(
      const scalar_t* __restrict__ input,
      outscalar_t* __restrict__ out_mean,
      outscalar_t* __restrict__ out_var_biased,
      volatile accscalar_t* staging_data,
      int* semaphores,
      const int reduction_size,
      const int stride) {
  // hide latency with concurrency
  accscalar_t x_mean[PARALLEL_LOADS];
  accscalar_t m_2_n[PARALLEL_LOADS];
  int count[PARALLEL_LOADS];

#pragma unroll
  for (int i = 0; i < PARALLEL_LOADS; i++) {
    x_mean[i] = accscalar_t(0);
    m_2_n[i] = accscalar_t(0);
    count[i] = accscalar_t(0);
  }
  // tensor dimension (m,c)

  // loop along m dimension
  int inner_loop_stride = blockDim.y * gridDim.y;

  // offset along m dimension
  int m_offset = blockIdx.y * blockDim.y + threadIdx.y;
  int c_offset = blockIdx.x * blockDim.x + threadIdx.x;

  int loop_count = 1 + (reduction_size - 1) / (inner_loop_stride * PARALLEL_LOADS);
  int address_base = m_offset * stride + c_offset;
  int address_increment = inner_loop_stride * stride;

  for (int i = 0; i < loop_count; i++) {
    accscalar_t x_math[PARALLEL_LOADS];
    accscalar_t x_count_inv[PARALLEL_LOADS];
    accscalar_t is_valid[PARALLEL_LOADS];

    // load multiple data in
#pragma unroll
    for (int j = 0; j < PARALLEL_LOADS; j++) {
      if (c_offset < stride && m_offset < reduction_size) {
        x_math[j] = input[address_base];
        count[j]++;
        x_count_inv[j] = accscalar_t(1) / count[j];
        is_valid[j] = accscalar_t(1);
      } else {
        x_math[j] = accscalar_t(0);
        x_count_inv[j] = accscalar_t(0);
        is_valid[j] = accscalar_t(0);
      }
      m_offset += inner_loop_stride;
      address_base += address_increment;
    }

    // calculate mean/m2n with welford
#pragma unroll
    for (int j = 0; j < PARALLEL_LOADS; j++) {
      accscalar_t delta0 = x_math[j] - x_mean[j];
      x_mean[j] += delta0 * x_count_inv[j];
      accscalar_t delta1 = x_math[j] - x_mean[j];
      m_2_n[j] += delta0 * delta1 * is_valid[j];
    }
  }

  // thread reduction to accumulate mean/m_2_n/count between PARALLEL_LOADS
#pragma unroll
  for (int j = 1; j < PARALLEL_LOADS; j++) {
    welford_merge_element(count[0], x_mean[0], m_2_n[0], count[j], x_mean[j], m_2_n[j]);
  }

  // release x_mean / m_2_n
  auto mean_th = x_mean[0];
  auto m2_th = m_2_n[0];
  auto count_th = count[0];

  // block-wise reduction with shared memory (since reduction cannot be done within a warp)
  static __shared__ accscalar_t shmem_mean[MAX_BLOCK_SIZE];
  static __shared__ accscalar_t shmem_m2n[MAX_BLOCK_SIZE];
  static __shared__ int shmem_count[MAX_BLOCK_SIZE];

  welford_merge_block_vertical(count_th, mean_th, m2_th, shmem_count, shmem_mean, shmem_m2n);

  // grid reduction if needed (coop launch used at the first place)
  if (gridDim.y > 1) {
    volatile accscalar_t* staging_mean = staging_data;
    volatile accscalar_t* staging_m2n = &staging_data[stride*gridDim.y];
    volatile int* staging_count = reinterpret_cast<volatile int*>(&staging_m2n[stride*gridDim.y]);

    address_base = c_offset + blockIdx.y * stride;
    // write data to staging_data;
    if (threadIdx.y == 0 && c_offset < stride) {
      staging_mean[address_base] = mean_th;
      staging_m2n[address_base] = m2_th;
      staging_count[address_base] = count_th;
    }

    __threadfence();
Jie's avatar
Jie committed
516
    __syncthreads(); // ensuring writes to staging_ is visible to all blocks
Jie's avatar
Jie committed
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558

    __shared__ bool is_last_block_done;
    // mark block done
    if (threadIdx.x == 0 && threadIdx.y == 0) {
      int old = atomicAdd(&semaphores[blockIdx.x], 1);
      is_last_block_done = (old == (gridDim.y-1));
    }

    __syncthreads();

    // check that all data is now available in global memory
    if (is_last_block_done) {
      count_th = 0;
      mean_th = accscalar_t(0.0);
      m2_th = accscalar_t(0.0);

      for (int y = threadIdx.y; y < gridDim.y; y += blockDim.y) {
        address_base = c_offset + y * stride;
        int num_new = c_offset < stride ? staging_count[address_base] : 0;
        accscalar_t mean_new = c_offset < stride ? staging_mean[address_base] : accscalar_t(0.0);
        accscalar_t m2n_new = c_offset < stride ? staging_m2n[address_base] : accscalar_t(0.0);

        welford_merge_element(count_th, mean_th, m2_th, num_new, mean_new, m2n_new);
      }

      welford_merge_block_vertical(count_th, mean_th, m2_th, shmem_count, shmem_mean, shmem_m2n);
      if (threadIdx.y == 0 && c_offset < stride) {
        out_mean[c_offset] = static_cast<outscalar_t>(mean_th);
        out_var_biased[c_offset] = static_cast<outscalar_t>(m2_th / count_th);
      }
    }
  } else {
    if (blockIdx.y == 0 && threadIdx.y == 0 && c_offset < stride) {
      out_mean[c_offset] = static_cast<outscalar_t>(mean_th);
      out_var_biased[c_offset] = static_cast<outscalar_t>(m2_th / count_th);
    }
  }
}

// parallel welford kernel to further reduce mean / biased_var
// into mean / unbiased_var / inv_std across multiple processes.
template <typename scalar_t>
jjsjann123's avatar
jjsjann123 committed
559
560
561
562
563
__global__ void welford_kernel_parallel(
      const scalar_t* __restrict__ mean,
      const scalar_t* __restrict__ var_biased,
      scalar_t* __restrict__ out_mean,
      scalar_t* __restrict__ out_var,
Jie's avatar
Jie committed
564
565
566
567
      scalar_t* __restrict__ inv_std,
      const int world_size,
      const int feature_size,
      const float eps,
jjsjann123's avatar
jjsjann123 committed
568
569
      const int numel) {

Jie's avatar
Jie committed
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
  for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < feature_size; i += gridDim.x * blockDim.x) {
    // load data;
    int address = i;
    scalar_t x_mean = 0;
    scalar_t m_2_n = 0;
    int count = 0;
    for (int j = 0; j < world_size; j++) {
      welford_merge_element(count, x_mean, m_2_n, numel, mean[address], var_biased[address]*numel);
      address += feature_size;
    }
    out_mean[i] = x_mean;
    out_var[i] = m_2_n/ (count - 1);
    inv_std[i] = scalar_t(1) / sqrt(m_2_n/count + eps);
  }
}
jjsjann123's avatar
jjsjann123 committed
585

Jie's avatar
Jie committed
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
// elementwise BN kernel
template <
    typename scalar_t,
    typename accscalar_t,
    typename layerscalar_t,
    int PARALLEL_LOADS>
__global__ void batchnorm_forward_c_last_kernel(
      const scalar_t* __restrict__ input,
      const accscalar_t* __restrict__ mean,
      const accscalar_t* __restrict__ inv_std,
      const layerscalar_t* __restrict__ weight,
      const layerscalar_t* __restrict__ shift,
      scalar_t* __restrict__ out,
      const int reduction_size,
      const int stride) {
  // tensor dimension (m,c)
  // loop along m dimension
  int inner_loop_stride = blockDim.y * gridDim.y;

  // offset along m dimension
  int m_offset = blockIdx.y * blockDim.y + threadIdx.y;
  int c_offset = blockIdx.x * blockDim.x + threadIdx.x;

  auto m_c = mean[c_offset];
  auto inv_std_c = static_cast<accscalar_t>(inv_std[c_offset]);
611
612
  auto w_c = weight == NULL ? accscalar_t(1.0) : static_cast<accscalar_t>(weight[c_offset]);
  auto s_c = shift == NULL ? accscalar_t(0.0) : static_cast<accscalar_t>(shift[c_offset]);
Jie's avatar
Jie committed
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630

  int loop_count = 1 + (reduction_size - 1) / (inner_loop_stride * PARALLEL_LOADS);
  int address_base = m_offset * stride + c_offset;
  int address_increment = inner_loop_stride * stride;

  for (int i = 0; i < loop_count; i++) {
#pragma unroll
    for (int j = 0; j < PARALLEL_LOADS; j++) {
      if (c_offset < stride && m_offset < reduction_size) {
        out[address_base] = static_cast<scalar_t>(
            w_c * (static_cast<accscalar_t>(input[address_base]) - m_c ) * inv_std_c + s_c
          );
      }
      m_offset += inner_loop_stride;
      address_base += address_increment;
    }
  }
}
jjsjann123's avatar
jjsjann123 committed
631

Jie's avatar
Jie committed
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
// batchnorm backward kernel for c last tensor
template
   <typename scalar_t,
    typename accscalar_t,
    typename layerscalar_t,
    int PARALLEL_LOADS>
__global__ void reduce_bn_c_last_kernel(
      const scalar_t* __restrict__ input,
      const scalar_t* __restrict__ grad_output,
      const accscalar_t* __restrict__ mean,
      const accscalar_t* __restrict__ inv_std,
      accscalar_t* __restrict__ mean_dy,
      accscalar_t* __restrict__ mean_dy_xmu,
      layerscalar_t* __restrict__ grad_weight,
      layerscalar_t* __restrict__ grad_bias,
      volatile accscalar_t* staging_data,
      int* semaphores,
      const int reduction_size,
      const int stride) {

  // hide latency with concurrency
  accscalar_t sum_dy[PARALLEL_LOADS];
  accscalar_t sum_dy_xmu[PARALLEL_LOADS];

#pragma unroll
  for (int i = 0; i < PARALLEL_LOADS; i++) {
    sum_dy[i] = accscalar_t(0);
    sum_dy_xmu[i] = accscalar_t(0);
  }
  // tensor dimension (m,c)

  // loop along m dimension
  int inner_loop_stride = blockDim.y * gridDim.y;

  // offset along m dimension
  int m_offset = blockIdx.y * blockDim.y + threadIdx.y;
  int c_offset = blockIdx.x * blockDim.x + threadIdx.x;

  int loop_count = 1 + (reduction_size - 1) / (inner_loop_stride * PARALLEL_LOADS);
  int address_base = m_offset * stride + c_offset;
  int address_increment = inner_loop_stride * stride;

  auto r_mean = mean[c_offset];
  auto factor = inv_std[c_offset];

  for (int i = 0; i < loop_count; i++) {
    accscalar_t x_input[PARALLEL_LOADS];
    accscalar_t x_grad_output[PARALLEL_LOADS];

    // load multiple data in
#pragma unroll
    for (int j = 0; j < PARALLEL_LOADS; j++) {
      if (c_offset < stride && m_offset < reduction_size) {
        x_input[j] = input[address_base];
        x_grad_output[j] = grad_output[address_base];
      } else {
        x_input[j] = accscalar_t(0);
        x_grad_output[j] = accscalar_t(0);
      }
      m_offset += inner_loop_stride;
      address_base += address_increment;
    }
jjsjann123's avatar
jjsjann123 committed
694

Jie's avatar
Jie committed
695
696
697
698
699
700
701
    // calculate sum_dy / sum_dy_xmu
#pragma unroll
    for (int j = 0; j < PARALLEL_LOADS; j++) {
      sum_dy[j] += x_grad_output[j];
      sum_dy_xmu[j] += x_grad_output[j] * (x_input[j] - r_mean);
    }
  }
jjsjann123's avatar
jjsjann123 committed
702

Jie's avatar
Jie committed
703
704
705
706
707
708
  // thread reduction to accumulate sum_dy / sum_dy_xmu between PARALLEL_LOADS
#pragma unroll
  for (int j = 1; j < PARALLEL_LOADS; j++) {
    sum_dy[0] += sum_dy[j];
    sum_dy_xmu[0] += sum_dy_xmu[j];
  }
jjsjann123's avatar
jjsjann123 committed
709

Jie's avatar
Jie committed
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
  // release array of registers
  auto sum_dy_th = sum_dy[0];
  auto sum_dy_xmu_th = sum_dy_xmu[0];

  // block-wise reduction with shared memory (since reduction cannot be done within a warp)
  static __shared__ accscalar_t shmem_sum_dy[MAX_BLOCK_SIZE];
  static __shared__ accscalar_t shmem_sum_dy_xmu[MAX_BLOCK_SIZE];

  merge_block_vertical(sum_dy_th, sum_dy_xmu_th, shmem_sum_dy, shmem_sum_dy_xmu);

  // grid reduction if needed (coop launch used at the first place)
  if (gridDim.y > 1) {
    volatile accscalar_t* staging_sum_dy = staging_data;
    volatile accscalar_t* staging_sum_dy_xmu = &staging_data[stride*gridDim.y];

    address_base = c_offset + blockIdx.y * stride;
    // write data to staging_data;
    if (threadIdx.y == 0 && c_offset < stride) {
      staging_sum_dy[address_base] = sum_dy_th;
      staging_sum_dy_xmu[address_base] = sum_dy_xmu_th;
    }

    __threadfence();
Jie's avatar
Jie committed
733
    __syncthreads(); // ensuring writes to staging_ is visible to all blocks
Jie's avatar
Jie committed
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756

    __shared__ bool is_last_block_done;
    // mark block done
    if (threadIdx.x == 0 && threadIdx.y == 0) {
      int old = atomicAdd(&semaphores[blockIdx.x], 1);
      is_last_block_done = (old == (gridDim.y-1));
    }

    __syncthreads();

    // check that all data is now available in global memory
    if (is_last_block_done) {
      sum_dy_th = accscalar_t(0.0);
      sum_dy_xmu_th = accscalar_t(0.0);

      for (int y = threadIdx.y; y < gridDim.y; y += blockDim.y) {
        address_base = c_offset + y * stride;
        sum_dy_th += (c_offset < stride ? staging_sum_dy[address_base] : accscalar_t(0.0));
        sum_dy_xmu_th += (c_offset < stride ? staging_sum_dy_xmu[address_base] : accscalar_t(0.0));
      }

      merge_block_vertical(sum_dy_th, sum_dy_xmu_th, shmem_sum_dy, shmem_sum_dy_xmu);
      if (threadIdx.y == 0 && c_offset < stride) {
757
758
759
760
761
762
        if (grad_bias != NULL) {
          grad_bias[c_offset] = static_cast<layerscalar_t>(sum_dy_th);
        }
        if (grad_weight != NULL) {
          grad_weight[c_offset] = static_cast<layerscalar_t>(sum_dy_xmu_th * factor);
        }
Jie's avatar
Jie committed
763
764
765
766
767
768
        mean_dy[c_offset] = sum_dy_th / reduction_size;
        mean_dy_xmu[c_offset] = sum_dy_xmu_th / reduction_size;
      }
    }
  } else {
    if (blockIdx.y == 0 && threadIdx.y == 0 && c_offset < stride) {
769
770
771
772
773
774
      if (grad_bias != NULL) {
        grad_bias[c_offset] = static_cast<layerscalar_t>(sum_dy_th);
      }
      if (grad_weight != NULL) {
        grad_weight[c_offset] = static_cast<layerscalar_t>(sum_dy_xmu_th * factor);
      }
Jie's avatar
Jie committed
775
776
777
      mean_dy[c_offset] = sum_dy_th / reduction_size;
      mean_dy_xmu[c_offset] = sum_dy_xmu_th / reduction_size;
    }
jjsjann123's avatar
jjsjann123 committed
778
779
  }
}
Jie's avatar
Jie committed
780

Jie's avatar
Jie committed
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
// elementwise BN kernel
template <
    typename scalar_t,
    typename accscalar_t,
    typename layerscalar_t,
    int PARALLEL_LOADS>
__global__ void batchnorm_backward_c_last_kernel(
      const scalar_t* __restrict__ grad_output,
      const scalar_t* __restrict__ input,
      const accscalar_t* __restrict__ mean,
      const accscalar_t* __restrict__ inv_std,
      const layerscalar_t* __restrict__ weight,
      const accscalar_t* __restrict__ mean_dy,
      const accscalar_t* __restrict__ mean_dy_xmu,
      scalar_t* __restrict__ grad_input,
      const int reduction_size,
      const int stride) {
  // tensor dimension (m,c)
  // loop along m dimension
  int inner_loop_stride = blockDim.y * gridDim.y;

  // offset along m dimension
  int m_offset = blockIdx.y * blockDim.y + threadIdx.y;
  int c_offset = blockIdx.x * blockDim.x + threadIdx.x;

  auto m_c = mean[c_offset];
  auto m_dy_c = mean_dy[c_offset];
  auto factor_1_c = inv_std[c_offset];
809
  auto factor_2_c = (weight == NULL? accscalar_t(1.0) : static_cast<accscalar_t>(weight[c_offset])) * factor_1_c;
Jie's avatar
Jie committed
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
  factor_1_c = factor_1_c * factor_1_c * mean_dy_xmu[c_offset];

  int loop_count = 1 + (reduction_size - 1) / (inner_loop_stride * PARALLEL_LOADS);
  int address_base = m_offset * stride + c_offset;
  int address_increment = inner_loop_stride * stride;

  for (int i = 0; i < loop_count; i++) {
#pragma unroll
    for (int j = 0; j < PARALLEL_LOADS; j++) {
      if (c_offset < stride && m_offset < reduction_size) {
        grad_input[address_base] = static_cast<scalar_t>(
            (static_cast<accscalar_t>(grad_output[address_base]) - m_dy_c -
            (static_cast<accscalar_t>(input[address_base]) - m_c) * factor_1_c)
            * factor_2_c);
      }
      m_offset += inner_loop_stride;
      address_base += address_increment;
    }
  }
}
jjsjann123's avatar
jjsjann123 committed
830
831
832
833
834
835
836
837
838
839
840

std::vector<at::Tensor> welford_mean_var_CUDA(const at::Tensor input) {
  const auto batch_size = input.size(0);
  const auto feature_size = input.size(1);

  auto space_size = get_tensor_spatial_size(input);
  auto scalar_type = promote_scalartype(input);

  at::Tensor out_var_biased = at::empty({feature_size}, input.options().dtype(scalar_type));
  at::Tensor out_mean = at::empty({feature_size}, input.options().dtype(scalar_type));

Jie's avatar
Jie committed
841
842
  int block_y = min(h_last_pow2(batch_size), int(MAX_BLOCK_SIZE / 32));
  int block_x = max(1, min(MAX_BLOCK_SIZE / block_y, h_last_pow2(space_size)));
jjsjann123's avatar
jjsjann123 committed
843
844
845
846
847
  const dim3 block(block_x, block_y);
  const dim3 grid(feature_size);

  auto stream = at::cuda::getCurrentCUDAStream();

848
849
  {
    using namespace at;
850
851
852
853
    DISPATCH_FLOAT_AND_HALF(input.scalar_type(), 0, "welford_mean_var_kernel",
      using accscalar_t = at::acc_type<scalar_t_0, true>;
      welford_kernel<scalar_t_0, accscalar_t, accscalar_t><<<grid, block, 0, stream>>>(
          input.data<scalar_t_0>(),
854
855
856
857
858
          out_mean.data<accscalar_t>(),
          out_var_biased.data<accscalar_t>(),
          batch_size,
          feature_size,
          space_size);
859
    );
860
  }
jjsjann123's avatar
jjsjann123 committed
861

Jie's avatar
Jie committed
862
  return {out_mean, out_var_biased};
jjsjann123's avatar
jjsjann123 committed
863
864
865
866
867
}

at::Tensor batchnorm_forward_CUDA(
    const at::Tensor input,
    const at::Tensor mean,
Jie's avatar
Jie committed
868
    const at::Tensor inv_std,
869
870
    const at::optional<at::Tensor> weight,
    const at::optional<at::Tensor> shift) {
jjsjann123's avatar
jjsjann123 committed
871
872
873
874
875
876
  const auto batch_size = input.size(0);
  const auto feature_size = input.size(1);
  at::Tensor out = at::empty_like(input);

  auto space_size = get_tensor_spatial_size(input);

Jie's avatar
Jie committed
877
878
879
880
881
882
  int block_x = max(32, min(MAX_BLOCK_SIZE, h_last_pow2(space_size)/4));
  int block_y = max(1, min(MAX_BLOCK_SIZE/block_x, h_last_pow2(batch_size)/4));
  const dim3 block(block_x, block_y);
  int grid_z = max(1, min(65535, h_last_pow2(space_size)/4/block_x));
  int batch_group_size = max(1, min(65535, h_last_pow2(batch_size)/block_y));
  const dim3 grid(feature_size, batch_group_size, grid_z);
jjsjann123's avatar
jjsjann123 committed
883
884
  auto stream = at::cuda::getCurrentCUDAStream();

885
  if (input.scalar_type() == at::ScalarType::Half
886
      && weight.has_value() &&
887
      weight.value().scalar_type() == at::ScalarType::Float) {
888
    using namespace at;
889
890
891
892
    DISPATCH_FLOAT_AND_HALF(input.scalar_type(), 0, "batchnorm_forward",
      using accscalar_t = at::acc_type<scalar_t_0, true>;
      batchnorm_forward_kernel<scalar_t_0, accscalar_t, accscalar_t><<<grid, block, 0, stream>>>(
          input.data<scalar_t_0>(),
jjsjann123's avatar
jjsjann123 committed
893
          mean.data<accscalar_t>(),
Jie's avatar
Jie committed
894
          inv_std.data<accscalar_t>(),
895
896
          weight.has_value() ? weight.value().data<accscalar_t>() : NULL,
          shift.has_value() ? shift.value().data<accscalar_t>() : NULL,
897
          out.data<scalar_t_0>(),
jjsjann123's avatar
jjsjann123 committed
898
          space_size,
Jie's avatar
Jie committed
899
          batch_size);
900
    );
jjsjann123's avatar
jjsjann123 committed
901
  } else {
902
    if (weight.has_value()) {
903
      TORCH_CHECK(input.scalar_type() == weight.value().scalar_type(),
904
          "input.scalar_type() is not supported with weight.scalar_type()");
905
    }
906
    using namespace at;
907
908
909
910
    DISPATCH_FLOAT_AND_HALF(input.scalar_type(), 0, "batchnorm_forward",
      using accscalar_t = at::acc_type<scalar_t_0, true>;
      batchnorm_forward_kernel<scalar_t_0, accscalar_t, scalar_t_0><<<grid, block, 0, stream>>>(
          input.data<scalar_t_0>(),
jjsjann123's avatar
jjsjann123 committed
911
          mean.data<accscalar_t>(),
Jie's avatar
Jie committed
912
          inv_std.data<accscalar_t>(),
913
914
915
          weight.has_value() ? weight.value().data<scalar_t_0>() : NULL,
          shift.has_value() ? shift.value().data<scalar_t_0>() : NULL,
          out.data<scalar_t_0>(),
jjsjann123's avatar
jjsjann123 committed
916
          space_size,
Jie's avatar
Jie committed
917
          batch_size);
918
    );
jjsjann123's avatar
jjsjann123 committed
919
920
921
922
923
924
925
926
  }
  return out;
}

std::vector<at::Tensor> reduce_bn_CUDA(
    const at::Tensor grad_output,
    const at::Tensor input,
    const at::Tensor mean,
Jie's avatar
Jie committed
927
    const at::Tensor inv_std,
928
    const at::optional<at::Tensor> weight)
jjsjann123's avatar
jjsjann123 committed
929
930
931
932
933
934
935
936
{
  const auto batch_size = input.size(0);
  const auto feature_size = input.size(1);

  auto scalar_type = promote_scalartype(input);

  at::Tensor mean_dy = at::empty({feature_size}, mean.options());
  at::Tensor mean_dy_xmu = at::empty({feature_size}, mean.options());
937
938
939
940
941
942
943
944
945
946

  at::Tensor grad_weight;
  at::Tensor grad_bias;
  if (weight.has_value()) {
    grad_weight = at::empty({feature_size}, weight.value().options());
    grad_bias = at::empty({feature_size}, weight.value().options());
  } else {
    grad_weight = at::empty({0}, mean.options());
    grad_bias = at::empty({0}, mean.options());
  }
jjsjann123's avatar
jjsjann123 committed
947
948
949

  auto space_size = get_tensor_spatial_size(input);

Jie's avatar
Jie committed
950
951
  int block_y = min(h_last_pow2(batch_size), int(MAX_BLOCK_SIZE/ 32));
  int block_x = max(1, min(MAX_BLOCK_SIZE/ block_y, h_last_pow2(space_size)));
jjsjann123's avatar
jjsjann123 committed
952
953
954
955
  const dim3 block(block_x, block_y);
  const dim3 grid(feature_size);
  auto stream = at::cuda::getCurrentCUDAStream();

956
  if (input.scalar_type() == at::ScalarType::Half
957
      && weight.has_value() &&
958
      weight.value().scalar_type() == at::ScalarType::Float) {
959
    using namespace at;
960
961
962
963
964
    DISPATCH_FLOAT_AND_HALF(input.scalar_type(), 0, "batchnorm_backward_reduce",
      using accscalar_t = at::acc_type<scalar_t_0, true>;
      reduce_bn_kernel<scalar_t_0, accscalar_t, accscalar_t><<<grid, block, 0, stream>>>(
          input.data<scalar_t_0>(),
          grad_output.data<scalar_t_0>(),
jjsjann123's avatar
jjsjann123 committed
965
          mean.data<accscalar_t>(),
Jie's avatar
Jie committed
966
          inv_std.data<accscalar_t>(),
jjsjann123's avatar
jjsjann123 committed
967
968
          mean_dy.data<accscalar_t>(),
          mean_dy_xmu.data<accscalar_t>(),
969
970
          weight.has_value() ? grad_weight.data<accscalar_t>() : NULL,
          weight.has_value() ? grad_bias.data<accscalar_t>() : NULL,
jjsjann123's avatar
jjsjann123 committed
971
972
          batch_size,
          feature_size,
Jie's avatar
Jie committed
973
          space_size);
974
    );
jjsjann123's avatar
jjsjann123 committed
975
  } else {
976
    if (weight.has_value()) {
977
        TORCH_CHECK(input.scalar_type() == weight.value().scalar_type(),
978
            "input.scalar_type() is not supported with weight.scalar_type()");
979
    }
980
    using namespace at;
981
982
983
984
985
    DISPATCH_FLOAT_AND_HALF(input.scalar_type(), 0, "batchnorm_backward_reduce",
      using accscalar_t = at::acc_type<scalar_t_0, true>;
      reduce_bn_kernel<scalar_t_0, accscalar_t, scalar_t_0><<<grid, block, 0, stream>>>(
          input.data<scalar_t_0>(),
          grad_output.data<scalar_t_0>(),
jjsjann123's avatar
jjsjann123 committed
986
          mean.data<accscalar_t>(),
Jie's avatar
Jie committed
987
          inv_std.data<accscalar_t>(),
jjsjann123's avatar
jjsjann123 committed
988
989
          mean_dy.data<accscalar_t>(),
          mean_dy_xmu.data<accscalar_t>(),
990
991
          weight.has_value() ? grad_weight.data<scalar_t_0>() : NULL,
          weight.has_value() ? grad_bias.data<scalar_t_0>() : NULL,
jjsjann123's avatar
jjsjann123 committed
992
993
          batch_size,
          feature_size,
Jie's avatar
Jie committed
994
          space_size);
995
    );
jjsjann123's avatar
jjsjann123 committed
996
  }
Jie's avatar
Jie committed
997

jjsjann123's avatar
jjsjann123 committed
998
999
1000
1001
1002
1003
1004
  return {mean_dy, mean_dy_xmu, grad_weight, grad_bias};
}

at::Tensor batchnorm_backward_CUDA(
    const at::Tensor grad_output,
    const at::Tensor input,
    const at::Tensor mean,
Jie's avatar
Jie committed
1005
    const at::Tensor inv_std,
1006
    const at::optional<at::Tensor> weight,
jjsjann123's avatar
jjsjann123 committed
1007
    const at::Tensor mean_dy,
Jie's avatar
Jie committed
1008
    const at::Tensor mean_dy_xmu) {
jjsjann123's avatar
jjsjann123 committed
1009
1010
1011
1012
1013
1014
1015
  const auto batch_size = input.size(0);
  const auto feature_size = input.size(1);

  at::Tensor grad_input = at::empty_like(input);

  auto space_size = get_tensor_spatial_size(input);

Jie's avatar
Jie committed
1016
1017
1018
1019
1020
1021
1022
  int block_x = max(32, min(MAX_BLOCK_SIZE, h_last_pow2(space_size)/4));
  int block_y = max(1, min(MAX_BLOCK_SIZE/block_x, h_last_pow2(batch_size)/4));
  const dim3 block(block_x, block_y);
  int grid_z = max(1, min(65535, h_last_pow2(space_size)/4/block_x));
  int batch_group_size = max(1, min(65535, h_last_pow2(batch_size)/block_y));
  const dim3 grid(feature_size, batch_group_size, grid_z);

jjsjann123's avatar
jjsjann123 committed
1023
1024
  auto stream = at::cuda::getCurrentCUDAStream();

1025
  if (input.scalar_type() == at::ScalarType::Half
1026
      && weight.has_value() &&
1027
      weight.value().scalar_type() == at::ScalarType::Float) {
1028
    using namespace at;
1029
1030
1031
1032
1033
    DISPATCH_FLOAT_AND_HALF(input.scalar_type(), 0, "batchnorm_backward",
      using accscalar_t = at::acc_type<scalar_t_0, true>;
      batchnorm_backward_kernel<scalar_t_0, accscalar_t, accscalar_t><<<grid, block, 0, stream>>>(
          grad_output.data<scalar_t_0>(),
          input.data<scalar_t_0>(),
jjsjann123's avatar
jjsjann123 committed
1034
          mean.data<accscalar_t>(),
Jie's avatar
Jie committed
1035
          inv_std.data<accscalar_t>(),
1036
          weight.has_value() ? weight.value().data<accscalar_t>() : NULL,
jjsjann123's avatar
jjsjann123 committed
1037
1038
          mean_dy.data<accscalar_t>(),
          mean_dy_xmu.data<accscalar_t>(),
1039
          grad_input.data<scalar_t_0>(),
jjsjann123's avatar
jjsjann123 committed
1040
          space_size,
Jie's avatar
Jie committed
1041
          batch_size);
1042
    );
jjsjann123's avatar
jjsjann123 committed
1043
  } else {
1044
    if (weight.has_value()) {
1045
      TORCH_CHECK(input.scalar_type() == weight.value().scalar_type(),
1046
          "input.scalar_type() is not supported with weight.scalar_type()");
1047
    }
1048
    using namespace at;
1049
1050
1051
1052
1053
    DISPATCH_FLOAT_AND_HALF(input.scalar_type(), 0, "batchnorm_backward",
      using accscalar_t = at::acc_type<scalar_t_0, true>;
      batchnorm_backward_kernel<scalar_t_0, accscalar_t, scalar_t_0><<<grid, block, 0, stream>>>(
          grad_output.data<scalar_t_0>(),
          input.data<scalar_t_0>(),
jjsjann123's avatar
jjsjann123 committed
1054
          mean.data<accscalar_t>(),
Jie's avatar
Jie committed
1055
          inv_std.data<accscalar_t>(),
1056
          weight.has_value() ? weight.value().data<scalar_t_0>() : NULL,
jjsjann123's avatar
jjsjann123 committed
1057
1058
          mean_dy.data<accscalar_t>(),
          mean_dy_xmu.data<accscalar_t>(),
1059
          grad_input.data<scalar_t_0>(),
jjsjann123's avatar
jjsjann123 committed
1060
          space_size,
Jie's avatar
Jie committed
1061
          batch_size);
1062
    );
jjsjann123's avatar
jjsjann123 committed
1063
  }
Jie's avatar
Jie committed
1064

jjsjann123's avatar
jjsjann123 committed
1065
1066
1067
  return grad_input;
}

Jie's avatar
Jie committed
1068
1069
1070
1071
1072
1073
std::vector<at::Tensor> welford_parallel_CUDA(const at::Tensor mean_feature_nodes,
                                              const at::Tensor var_biased,
                                              int numel,
                                              const float eps) {
  const auto world_size = mean_feature_nodes.size(0);
  const auto feature_size = mean_feature_nodes.size(1);
jjsjann123's avatar
jjsjann123 committed
1074
1075

  at::Tensor out_var = at::empty({feature_size}, var_biased.options());
Jie's avatar
Jie committed
1076
  at::Tensor inv_std = at::empty_like(out_var);
jjsjann123's avatar
jjsjann123 committed
1077
1078
1079
  at::Tensor out_mean = at::empty_like(out_var);

  // TODO(jie): tile this for memory coalescing!
Jie's avatar
Jie committed
1080
1081
1082
  const int block = std::min(h_last_pow2(feature_size), MAX_BLOCK_SIZE);
  const int grid = std::max<int>(1, feature_size / block);

jjsjann123's avatar
jjsjann123 committed
1083
1084
  auto stream = at::cuda::getCurrentCUDAStream();

1085
1086
  {
    using namespace at;
1087
1088
1089
1090
1091
1092
1093
    DISPATCH_FLOAT_AND_HALF(mean_feature_nodes.scalar_type(), 0, "welford_parallel_kernel",
      welford_kernel_parallel<scalar_t_0><<<grid, block, 0, stream>>>(
          mean_feature_nodes.data<scalar_t_0>(),
          var_biased.data<scalar_t_0>(),
          out_mean.data<scalar_t_0>(),
          out_var.data<scalar_t_0>(),
          inv_std.data<scalar_t_0>(),
1094
1095
1096
1097
          world_size,
          feature_size,
          eps,
          numel);
1098
    );
1099
  }
jjsjann123's avatar
jjsjann123 committed
1100

Jie's avatar
Jie committed
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
  return {out_mean, out_var, inv_std};
}

std::vector<at::Tensor> welford_mean_var_c_last_CUDA(const at::Tensor input) {
  const auto stride = input.size(input.ndimension()-1);
  const auto reduction_size = input.numel() / stride;

  auto scalar_type = promote_scalartype(input);
  auto option = input.options().dtype(scalar_type);

  at::Tensor out_var_biased = at::empty({stride}, option);
  at::Tensor out_mean = at::empty({stride}, option);

  dim3 block;
  dim3 grid;
  flexible_launch_configs(reduction_size, stride, block, grid, true);

  at::Tensor staging_data;
  at::Tensor semaphores;
  if (grid.y > 1) {
    staging_data = at::empty({4*stride*grid.y}, option);
1122
    semaphores = at::zeros({grid.x}, input.options().dtype(at::kInt));
Jie's avatar
Jie committed
1123
1124
1125
1126
  }

  auto stream = at::cuda::getCurrentCUDAStream();

1127
1128
  {
    using namespace at;
1129
1130
    DISPATCH_FLOAT_AND_HALF(input.scalar_type(), 0, "welford_mean_var_c_last",
      using accscalar_t = at::acc_type<scalar_t_0, true>;
1131
1132
      accscalar_t* staging_data_ptr = grid.y > 1 ? staging_data.data<accscalar_t>() : nullptr;
      int* semaphores_ptr = grid.y > 1 ? semaphores.data<int>() : nullptr;
1133
      welford_kernel_c_last<scalar_t_0, accscalar_t, accscalar_t, ELEMENTS_PER_ITER>
1134
          <<<grid, block, 0, stream>>>(
1135
          input.data<scalar_t_0>(),
1136
1137
1138
1139
1140
1141
          out_mean.data<accscalar_t>(),
          out_var_biased.data<accscalar_t>(),
          staging_data_ptr,
          semaphores_ptr,
          reduction_size,
          stride);
1142
    );
1143
  }
Jie's avatar
Jie committed
1144
1145
1146
1147
1148
1149
1150
1151

  return {out_mean, out_var_biased};
}

at::Tensor batchnorm_forward_c_last_CUDA(
    const at::Tensor input,
    const at::Tensor mean,
    const at::Tensor inv_std,
1152
1153
    const at::optional<at::Tensor> weight,
    const at::optional<at::Tensor> shift) {
Jie's avatar
Jie committed
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
  const auto stride = input.size(input.ndimension()-1);
  const auto reduction_size = input.numel() / stride;

  at::Tensor out = at::empty_like(input);

  dim3 block;
  dim3 grid;
  flexible_launch_configs(reduction_size, stride, block, grid);

  auto stream = at::cuda::getCurrentCUDAStream();

1165
1166
  if (input.scalar_type() == at::ScalarType::Half
      && weight.has_value() && weight.value().scalar_type() == at::ScalarType::Float) {
1167
    using namespace at;
1168
1169
1170
    DISPATCH_FLOAT_AND_HALF(input.scalar_type(), 0, "batchnorm_forward",
      using accscalar_t = at::acc_type<scalar_t_0, true>;
      batchnorm_forward_c_last_kernel<scalar_t_0, accscalar_t, accscalar_t, ELEMENTS_PER_ITER>
Jie's avatar
Jie committed
1171
          <<<grid, block, 0, stream>>>(
1172
          input.data<scalar_t_0>(),
Jie's avatar
Jie committed
1173
1174
          mean.data<accscalar_t>(),
          inv_std.data<accscalar_t>(),
1175
1176
          weight.has_value() ? weight.value().data<accscalar_t>() : NULL,
          shift.has_value() ? shift.value().data<accscalar_t>(): NULL,
1177
          out.data<scalar_t_0>(),
Jie's avatar
Jie committed
1178
1179
          reduction_size,
          stride);
1180
    );
Jie's avatar
Jie committed
1181
  } else {
1182
    if (weight.has_value()) {
1183
      TORCH_CHECK(input.scalar_type() == weight.value().scalar_type(),
1184
          "input.scalar_type() is not supported with weight.scalar_type()");
1185
    }
1186
    using namespace at;
1187
1188
1189
    DISPATCH_FLOAT_AND_HALF(input.scalar_type(), 0, "batchnorm_forward",
      using accscalar_t = at::acc_type<scalar_t_0, true>;
      batchnorm_forward_c_last_kernel<scalar_t_0, accscalar_t, scalar_t_0, ELEMENTS_PER_ITER>
Jie's avatar
Jie committed
1190
          <<<grid, block, 0, stream>>>(
1191
          input.data<scalar_t_0>(),
Jie's avatar
Jie committed
1192
1193
          mean.data<accscalar_t>(),
          inv_std.data<accscalar_t>(),
1194
1195
1196
          weight.has_value() ? weight.value().data<scalar_t_0>() : NULL,
          shift.has_value() ? shift.value().data<scalar_t_0>(): NULL,
          out.data<scalar_t_0>(),
Jie's avatar
Jie committed
1197
1198
          reduction_size,
          stride);
1199
    );
Jie's avatar
Jie committed
1200
1201
1202
1203
1204
1205
1206
1207
1208
  }
  return out;
}

std::vector<at::Tensor> reduce_bn_c_last_CUDA(
    const at::Tensor grad_output,
    const at::Tensor input,
    const at::Tensor mean,
    const at::Tensor inv_std,
1209
    const at::optional<at::Tensor> weight) {
Jie's avatar
Jie committed
1210
1211
1212
1213
1214
  const auto stride = input.size(input.ndimension()-1);
  const auto reduction_size = input.numel() / stride;

  at::Tensor mean_dy = at::empty({stride}, mean.options());
  at::Tensor mean_dy_xmu = at::empty({stride}, mean.options());
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225

  at::Tensor grad_weight;
  at::Tensor grad_bias;
  if (weight.has_value()) {
    grad_weight = at::empty({stride}, weight.value().options());
    grad_bias = at::empty({stride}, weight.value().options());
  } else {
    // because I cannot return an uninitialized at::Tensor
    grad_weight = at::empty({0}, mean.options());
    grad_bias = at::empty({0}, mean.options());
  }
Jie's avatar
Jie committed
1226
1227
1228
1229
1230
1231
1232
1233
1234

  dim3 block;
  dim3 grid;
  flexible_launch_configs(reduction_size, stride, block, grid, true);

  at::Tensor staging_data;
  at::Tensor semaphores;
  if (grid.y > 1) {
    staging_data = at::empty({2*stride*grid.y}, mean.options());
1235
    semaphores = at::zeros({grid.x}, input.options().dtype(at::kInt));
Jie's avatar
Jie committed
1236
1237
1238
  }
  auto stream = at::cuda::getCurrentCUDAStream();

1239
  if (input.scalar_type() == at::ScalarType::Half
1240
      && weight.has_value()
1241
      && weight.value().scalar_type() == at::ScalarType::Float) {
1242
    using namespace at;
1243
1244
    DISPATCH_FLOAT_AND_HALF(input.scalar_type(), 0, "batchnorm_backward_reduce",
      using accscalar_t = at::acc_type<scalar_t_0, true>;
Jie's avatar
Jie committed
1245
1246
      accscalar_t* staging_data_ptr = grid.y > 1 ? staging_data.data<accscalar_t>() : nullptr;
      int* semaphores_ptr = grid.y > 1 ? semaphores.data<int>() : nullptr;
1247
      reduce_bn_c_last_kernel<scalar_t_0, accscalar_t, accscalar_t, ELEMENTS_PER_ITER>
Jie's avatar
Jie committed
1248
          <<<grid, block, 0, stream>>>(
1249
1250
          input.data<scalar_t_0>(),
          grad_output.data<scalar_t_0>(),
Jie's avatar
Jie committed
1251
1252
1253
1254
          mean.data<accscalar_t>(),
          inv_std.data<accscalar_t>(),
          mean_dy.data<accscalar_t>(),
          mean_dy_xmu.data<accscalar_t>(),
1255
1256
          weight.has_value() ? grad_weight.data<accscalar_t>() : NULL,
          weight.has_value() ?grad_bias.data<accscalar_t>() : NULL,
Jie's avatar
Jie committed
1257
1258
1259
1260
          staging_data_ptr,
          semaphores_ptr,
          reduction_size,
          stride);
1261
    );
Jie's avatar
Jie committed
1262
  } else {
1263
    if (weight.has_value()) {
1264
      TORCH_CHECK(input.scalar_type() == weight.value().scalar_type(),
1265
          "input.scalar_type() is not supported with weight.scalar_type()");
1266
    }
1267
    using namespace at;
1268
1269
    DISPATCH_FLOAT_AND_HALF(input.scalar_type(), 0, "batchnorm_backward_reduce",
      using accscalar_t = at::acc_type<scalar_t_0, true>;
Jie's avatar
Jie committed
1270
1271
      accscalar_t* staging_data_ptr = grid.y > 1 ? staging_data.data<accscalar_t>() : nullptr;
      int* semaphores_ptr = grid.y > 1 ? semaphores.data<int>() : nullptr;
1272
      reduce_bn_c_last_kernel<scalar_t_0, accscalar_t, scalar_t_0, ELEMENTS_PER_ITER>
Jie's avatar
Jie committed
1273
          <<<grid, block, 0, stream>>>(
1274
1275
          input.data<scalar_t_0>(),
          grad_output.data<scalar_t_0>(),
Jie's avatar
Jie committed
1276
1277
1278
1279
          mean.data<accscalar_t>(),
          inv_std.data<accscalar_t>(),
          mean_dy.data<accscalar_t>(),
          mean_dy_xmu.data<accscalar_t>(),
1280
1281
          weight.has_value() ? grad_weight.data<scalar_t_0>() : NULL,
          weight.has_value() ?grad_bias.data<scalar_t_0>() : NULL,
Jie's avatar
Jie committed
1282
1283
1284
1285
          staging_data_ptr,
          semaphores_ptr,
          reduction_size,
          stride);
1286
    );
Jie's avatar
Jie committed
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
  }

  return {mean_dy, mean_dy_xmu, grad_weight, grad_bias};
}

at::Tensor batchnorm_backward_c_last_CUDA(
    const at::Tensor grad_output,
    const at::Tensor input,
    const at::Tensor mean,
    const at::Tensor inv_std,
1297
    const at::optional<at::Tensor> weight,
Jie's avatar
Jie committed
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
    const at::Tensor mean_dy,
    const at::Tensor mean_dy_xmu) {
  const auto stride = input.size(input.ndimension()-1);
  const auto reduction_size = input.numel() / stride;

  at::Tensor grad_input = at::empty_like(input);

  dim3 block;
  dim3 grid;
  flexible_launch_configs(reduction_size, stride, block, grid);

  auto stream = at::cuda::getCurrentCUDAStream();

1311
1312
  if (input.scalar_type() == at::ScalarType::Half
      && weight.has_value() && weight.value().scalar_type() == at::ScalarType::Float) {
1313
    using namespace at;
1314
1315
1316
    DISPATCH_FLOAT_AND_HALF(input.scalar_type(), 0, "batchnorm_forward",
      using accscalar_t = at::acc_type<scalar_t_0, true>;
      batchnorm_backward_c_last_kernel<scalar_t_0, accscalar_t, accscalar_t, ELEMENTS_PER_ITER>
Jie's avatar
Jie committed
1317
          <<<grid, block, 0, stream>>>(
1318
1319
          grad_output.data<scalar_t_0>(),
          input.data<scalar_t_0>(),
Jie's avatar
Jie committed
1320
1321
          mean.data<accscalar_t>(),
          inv_std.data<accscalar_t>(),
1322
          weight.has_value() ? weight.value().data<accscalar_t>() : NULL,
Jie's avatar
Jie committed
1323
1324
          mean_dy.data<accscalar_t>(),
          mean_dy_xmu.data<accscalar_t>(),
1325
          grad_input.data<scalar_t_0>(),
Jie's avatar
Jie committed
1326
1327
          reduction_size,
          stride);
1328
    );
Jie's avatar
Jie committed
1329
  } else {
1330
    if (weight.has_value()) {
1331
      TORCH_CHECK(input.scalar_type() == weight.value().scalar_type(),
1332
          "input.scalar_type() is not supported with weight.scalar_type()");
1333
    }
1334
    using namespace at;
1335
1336
1337
    DISPATCH_FLOAT_AND_HALF(input.scalar_type(), 0, "batchnorm_forward",
      using accscalar_t = at::acc_type<scalar_t_0, true>;
      batchnorm_backward_c_last_kernel<scalar_t_0, accscalar_t, scalar_t_0, ELEMENTS_PER_ITER>
Jie's avatar
Jie committed
1338
          <<<grid, block, 0, stream>>>(
1339
1340
          grad_output.data<scalar_t_0>(),
          input.data<scalar_t_0>(),
Jie's avatar
Jie committed
1341
1342
          mean.data<accscalar_t>(),
          inv_std.data<accscalar_t>(),
1343
          weight.has_value() ? weight.value().data<scalar_t_0>() : NULL,
Jie's avatar
Jie committed
1344
1345
          mean_dy.data<accscalar_t>(),
          mean_dy_xmu.data<accscalar_t>(),
1346
          grad_input.data<scalar_t_0>(),
Jie's avatar
Jie committed
1347
1348
          reduction_size,
          stride);
1349
    );
Jie's avatar
Jie committed
1350
1351
1352
  }
 
  return grad_input;
jjsjann123's avatar
jjsjann123 committed
1353
}