"research/inception/README.md" did not exist on "c766ef27532b3fa68aeca984725b04d1550ce24f"
test_fused_sgd.py 38.4 KB
Newer Older
Michael Carilli's avatar
Michael Carilli committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
import unittest

import functools as ft
import itertools as it

from apex import amp
from apex.amp import _amp_state
import torch
from torch import nn
import torch.nn.functional as F
from torch.nn import Parameter

from utils import common_init, HALF, FLOAT,\
    ALWAYS_HALF, ALWAYS_FLOAT, MATCH_INPUT

16
from apex.testing.common_utils import skipIfRocm
Michael Carilli's avatar
Michael Carilli committed
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

try:
  import amp_C
  disabled = False
  from apex.optimizers import FusedSGD as FusedSGD
except ImportError as err:
  print("amp_C fused kernels unavailable, disabling TestMultiTensorApply.  ImportError was ", err)
  disabled = True


class MyModel(torch.nn.Module):
    def __init__(self, unique):
        super(MyModel, self).__init__()
        self.weight0 = Parameter(unique +
            torch.arange(2, device='cuda', dtype=torch.float32))
        self.weight1 = Parameter(1. + unique + torch.arange(2, device='cuda', dtype=torch.float16))

    @staticmethod
    def ops(input, weight0, weight1):
        return ((input*(weight0.float()))*(weight1.float())).sum()

    def forward(self, input):
        return self.ops(input, self.weight0, self.weight1)

# Abandon all hope, ye who enter here.

# This is hands down the ugliest code I have ever written, but it succeeds in testing
# multiple models/optimizers/losses fairly thoroughly.  Many of the different test cases
# require slightly divergent code in a way that seems near-impossible to genericize into a simple
# cross product or nested loops.

class TestMultipleModelsOptimizersLosses(unittest.TestCase):
    def setUp(self):
        self.x = torch.ones((2), device='cuda', dtype=torch.float32)
        common_init(self)

    def tearDown(self):
        pass

    @unittest.skipIf(disabled, "amp_C is unavailable")
    def test_2models2losses1optimizer(self):
        model0 = MyModel(1)
        model1 = MyModel(2)

        optimizer = torch.optim.SGD([{'params' : model0.parameters(), 'lr' : 0.25},
                                     {'params' : model1.parameters(), 'lr' : 0.5}],
                                    momentum=0.125)

        reference_grads = []
        for i in range(2):
            optimizer.zero_grad()
            loss0 = model0(self.x)
            loss1 = model1(self.x)
            loss0.backward()
            loss1.backward()

            reference_grads.append([param.grad.data.clone() for param in model0.parameters()] +
                                   [param.grad.data.clone() for param in model1.parameters()])

            optimizer.step()

        final_params = [param.data.clone() for param in model0.parameters()] + \
                       [param.data.clone() for param in model1.parameters()]

81
82
83
84
85
86
        for materialize_master_grads in (False, True):
          for opt_level in ("O0", "O1", "O2", "O3"):
            for how_to_zero in ("none", "model", "optimizer"):
              for use_multiple_loss_scalers in (False, True):
                if opt_level == "O1" or opt_level == "O2":
                    inject_inf_iters = (-1, 0, 1)
Michael Carilli's avatar
Michael Carilli committed
87
                else:
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
                    inject_inf_iters = (-1,)

                for inject_inf in inject_inf_iters:
                  if inject_inf >= 0:
                     inject_inf_locs = ("fp16", "fp32")
                     which_backwards = (0, 1)
                  else:
                     inject_inf_locs = ("fdsa",)
                     which_backwards = (None,)

                  for inject_inf_loc in inject_inf_locs:
                    for which_backward in which_backwards:
                        if use_multiple_loss_scalers:
                            num_losses = 2
                            loss_ids = [0, 1]
                        else:
                            num_losses = 1
                            loss_ids = [0, 0]
Michael Carilli's avatar
Michael Carilli committed
106

107
108
109
110
                        if inject_inf >= 0:
                            iters = 3
                        else:
                            iters = 2
Michael Carilli's avatar
Michael Carilli committed
111
112
113
114

                        model0 = MyModel(1)
                        model1 = MyModel(2)

115
                        models = [model0, model1]
Michael Carilli's avatar
Michael Carilli committed
116
117

                        optimizer = FusedSGD([{'params' : model0.parameters(), 'lr' : 0.25},
118
119
120
                                              {'params' : model1.parameters(), 'lr' : 0.5}],
                                             momentum=0.125,
                                             materialize_master_grads=materialize_master_grads)
Michael Carilli's avatar
Michael Carilli committed
121
122

                        _amp_state.allow_incoming_model_not_fp32 = True
123
124
                        [model0, model1], optimizer = amp.initialize(
                            [model0, model1],
Michael Carilli's avatar
Michael Carilli committed
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
                            optimizer,
                            opt_level=opt_level,
                            verbosity=0,
                            cast_model_type=False,
                            num_losses=num_losses)
                        _amp_state.allow_incoming_model_not_fp32 = False

                        _amp_state.loss_scalers[0]._loss_scale = 4.0
                        if use_multiple_loss_scalers:
                            _amp_state.loss_scalers[1]._loss_scale = 16.0

                        unskipped = 0
                        for i in range(iters):
                            if how_to_zero == "none":
                                for model in models:
                                    for param in model.parameters():
                                        param.grad = None
                            elif how_to_zero == "model":
                                for model in models:
                                    model.zero_grad()
                            else:
                                optimizer.zero_grad()

148
149
                            loss0 = model0(self.x)
                            loss1 = model1(self.x)
Michael Carilli's avatar
Michael Carilli committed
150
151
152
153
154

                            with amp.scale_loss(loss0, optimizer, loss_id=loss_ids[0]) as scaled_loss:
                                scaled_loss.backward()
                                if i == inject_inf and which_backward == 0:
                                    if inject_inf_loc == "fp32":
155
                                        model0.weight0.grad[0] = float('inf')
Michael Carilli's avatar
Michael Carilli committed
156
                                    elif inject_inf_loc == "fp16":
157
                                        model0.weight1.grad[0] = float('inf')
Michael Carilli's avatar
Michael Carilli committed
158
159
160
161
                            with amp.scale_loss(loss1, optimizer, loss_id=loss_ids[1]) as scaled_loss:
                                scaled_loss.backward()
                                if i == inject_inf and which_backward == 1:
                                    if inject_inf_loc == "fp32":
162
                                        model1.weight0.grad[0] = float('inf')
Michael Carilli's avatar
Michael Carilli committed
163
                                    elif inject_inf_loc == "fp16":
164
                                        model1.weight1.grad[0] = float('inf')
Michael Carilli's avatar
Michael Carilli committed
165
166

                            if i != inject_inf:
167
                                master_params = amp.master_params(optimizer)
Michael Carilli's avatar
Michael Carilli committed
168
                                for param, reference_grad in zip(master_params, reference_grads[unskipped]):
169
170
171
172
173
                                    if opt_level == "O2" and not materialize_master_grads:
                                        continue
                                    else:
                                        self.assertTrue(torch.allclose(param.grad.float(), reference_grad.float()),
                                                        "opt_level {} i {} inject_inf {} which_backward {} inject_inf_loc {} use_multiple_loss_scalers {}".format(opt_level, i, inject_inf, which_backward, inject_inf_loc, use_multiple_loss_scalers))
Michael Carilli's avatar
Michael Carilli committed
174
175
176
                                unskipped += 1
                            optimizer.step()

177
                        model_params = [p for p in model0.parameters()] + [p for p in model1.parameters()]
Michael Carilli's avatar
Michael Carilli committed
178
179
180
181
182
183
184
185
186
187
                        for model, master, reference in zip(
                                model_params,
                                amp.master_params(optimizer),
                                final_params):
                            self.assertTrue(torch.allclose(model, reference))
                            self.assertTrue(torch.allclose(model, master.to(model.dtype)))

                        if opt_level == "O1":
                            _amp_state.handle._deactivate()

188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
    @unittest.skipIf(disabled, "amp_C is unavailable")
    def test_3models2losses1optimizer(self):

        model0 = MyModel(1)
        model1 = MyModel(2)
        model2 = MyModel(3)

        optimizer = torch.optim.SGD([{'params' : model0.parameters(), 'lr' : 0.25},
                                     {'params' : model1.parameters(), 'lr' : 0.5},
                                     {'params' : model2.parameters(), 'lr' : 0.125}],
                                     momentum=0.125)

        reference_grads = []
        for i in range(2):
            optimizer.zero_grad()
            loss0 = model0(self.x) + model2(self.x)
            loss1 = model1(self.x) + model2(self.x)
            loss0.backward()
            loss1.backward()

            reference_grads.append([param.grad.data.clone() for param in model0.parameters()] +
                                   [param.grad.data.clone() for param in model1.parameters()] +
                                   [param.grad.data.clone() for param in model2.parameters()])

            optimizer.step()


        final_params = [param.data.clone() for param in model0.parameters()] + \
                       [param.data.clone() for param in model1.parameters()] + \
                       [param.data.clone() for param in model2.parameters()]

        for materialize_master_grads in (False, True):
          for opt_level in ("O0", "O1", "O2", "O3"):
            for how_to_zero in ("none", "model", "optimizer"):
              for use_multiple_loss_scalers in (False, True):
                if opt_level == "O1" or opt_level == "O2":
                    inject_inf_iters = (-1, 0, 1)
                else:
                    inject_inf_iters = (-1,)

                for inject_inf in inject_inf_iters:
                  if inject_inf >= 0:
                     inject_inf_locs = ("fp16", "fp32")
                     which_backwards = (0, 1)
                  else:
                     inject_inf_locs = ("fdsa",)
                     which_backwards = (None,)

                  for inject_inf_loc in inject_inf_locs:
                    for which_backward in which_backwards:
                      if use_multiple_loss_scalers:
                          num_losses = 2
                          loss_ids = [0, 1]
                      else:
                          num_losses = 1
                          loss_ids = [0, 0]

                      if inject_inf >= 0:
                          iters = 3
                          if which_backward == 0:
                              which_models = (0, 2)
                          elif which_backward == 1:
                              which_models = (1, 2)
                      else:
                          iters = 2
                          which_models = (None,)

                      for which_model in which_models:
                          model0 = MyModel(1)
                          model1 = MyModel(2)
                          model2 = MyModel(3)

                          models = [model0, model1, model2]

                          optimizer = FusedSGD([{'params' : model0.parameters(), 'lr' : 0.25},
                                               {'params' : model1.parameters(), 'lr' : 0.5},
                                               {'params' : model2.parameters(), 'lr' : 0.125}],
                                               momentum=0.125,
                                               materialize_master_grads=materialize_master_grads)

                          _amp_state.allow_incoming_model_not_fp32 = True
                          [model0, model1, model2], optimizer = amp.initialize(
                              [model0, model1, model2],
                              optimizer,
                              opt_level=opt_level,
                              verbosity=0,
                              cast_model_type=False,
                              num_losses=num_losses)
                          _amp_state.allow_incoming_model_not_fp32 = False

                          _amp_state.loss_scalers[0]._loss_scale = 4.0
                          if use_multiple_loss_scalers:
                              _amp_state.loss_scalers[1]._loss_scale = 16.0

                          unskipped = 0
                          for i in range(iters):
                              if how_to_zero == "none":
                                  for model in models:
                                      for param in model.parameters():
                                          param.grad = None
                              elif how_to_zero == "model":
                                  for model in models:
                                      model.zero_grad()
                              else:
                                  optimizer.zero_grad()

                              loss0 = model0(self.x) + model2(self.x)
                              loss1 = model1(self.x) + model2(self.x)

                              with amp.scale_loss(loss0, optimizer, loss_id=loss_ids[0]) as scaled_loss:
                                  scaled_loss.backward()
                                  if i == inject_inf and which_backward == 0:
                                      if which_model == 0:
                                          inj_model = model0
                                      elif which_model == 2:
                                          inj_model = model2
                                      else:
                                          raise RuntimeError(which_model + " invalid for loss 0")
                                      if inject_inf_loc == "fp32":
                                          inj_model.weight0.grad[0] = float('inf')
                                      elif inject_inf_loc == "fp16":
                                          inj_model.weight1.grad[0] = float('inf')
                              with amp.scale_loss(loss1, optimizer, loss_id=loss_ids[1]) as scaled_loss:
                                  scaled_loss.backward()
                                  if i == inject_inf and which_backward == 1:
                                      if which_model == 1:
                                          inj_model = model1
                                      elif which_model == 2:
                                          inj_model = model2
                                      else:
                                          raise RuntimeError(which_model + " invalid for loss 1 ")
                                      if inject_inf_loc == "fp32":
                                          inj_model.weight0.grad[0] = float('inf')
                                      elif inject_inf_loc == "fp16":
                                          inj_model.weight1.grad[0] = float('inf')

                              if i != inject_inf:
                                  master_params = amp.master_params(optimizer)
                                  for param, reference_grad in zip(master_params, reference_grads[unskipped]):
                                      if opt_level == "O2" and not materialize_master_grads:
                                          continue
                                      else:
                                          self.assertTrue(torch.allclose(param.grad.float(), reference_grad.float()),
                                          "opt_level {} i {} inject_inf {} which_backward {} inject_inf_loc {} which_model {} use_multiple_loss_scalers {}".format(opt_level, i, inject_inf, which_backward, inject_inf_loc, which_model, use_multiple_loss_scalers))
                                  unskipped += 1

                              optimizer.step()

                          model_params = [p for p in model0.parameters()] + \
                                         [p for p in model1.parameters()] + \
                                         [p for p in model2.parameters()]
                          for model, master, reference in zip(
                                  model_params,
                                  amp.master_params(optimizer),
                                  final_params):
                              self.assertTrue(torch.allclose(model, reference))
                              self.assertTrue(torch.allclose(model, master.to(model.dtype)))

                          if opt_level == "O1":
                              _amp_state.handle._deactivate()

Michael Carilli's avatar
Michael Carilli committed
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
    @unittest.skipIf(disabled, "amp_C is unavailable")
    def test_2models2losses2optimizers(self):
        model0 = MyModel(1)
        model1 = MyModel(2)

        optimizer0 = torch.optim.SGD([{'params' : model0.parameters(), 'lr' : 0.25}],
                                      momentum=0.125)
        optimizer1 = torch.optim.SGD([{'params' : model1.parameters(), 'lr' : 0.5}],
                                      momentum=0.25)

        # Don't do it like this:  reference_grads = [[]]*5
        # because then it creates a list of 5 references to the same "[]" and appending
        # to any of them effectively makes you append to all of them, which multiplies
        # the resulting size of reference_grads by 5x and needless to say makes the test fail.
        reference_grads = [[], [], [], [], []]
        final_params = [None, None, None, None, None]
        for i in range(2):
            optimizer0.zero_grad()
            optimizer1.zero_grad()
            loss0 = model0(self.x)
            loss1 = model1(self.x)
            loss0.backward()
            loss1.backward()

            reference_grads[0].append([param.grad.data.clone() for param in model0.parameters()] +
                                   [param.grad.data.clone() for param in model1.parameters()])

            optimizer0.step()
            optimizer1.step()

        final_params[0] = [param.data.clone() for param in model0.parameters()] + \
                          [param.data.clone() for param in model1.parameters()]

        def what_got_skipped(which_iter, which_backward):
            if which_iter == 0 and which_backward == 0:
                return 1
            if which_iter == 0 and which_backward == 1:
                return 2
            if which_iter == 1 and which_backward == 0:
                return 3
            if which_iter == 1 and which_backward == 1:
                return 4
            return 0

        for which_iter in (0,1):
            for which_backward in (0,1):
                model0 = MyModel(1)
                model1 = MyModel(2)

                optimizer0 = torch.optim.SGD([{'params' : model0.parameters(), 'lr' : 0.25}],
                                              momentum=0.125)
                optimizer1 = torch.optim.SGD([{'params' : model1.parameters(), 'lr' : 0.5}],
                                              momentum=0.25)

                for i in range(3):
                    optimizer0.zero_grad()
                    optimizer1.zero_grad()
                    loss0 = model0(self.x)
                    loss1 = model1(self.x)
                    loss0.backward()
                    loss1.backward()

                    if i != which_iter:
                        reference_grads[what_got_skipped(which_iter, which_backward)].append(
                            [param.grad.data.clone() for param in model0.parameters()] +
                            [param.grad.data.clone() for param in model1.parameters()])

                    if i == which_iter:
                        if which_backward == 0:
                            optimizer1.step()
                        else:
                            optimizer0.step()
                    else:
                        optimizer0.step()
                        optimizer1.step()

                final_params[what_got_skipped(which_iter, which_backward)] = \
                    [param.data.clone() for param in model0.parameters()] + \
                    [param.data.clone() for param in model1.parameters()]

429
430
431
432
433
434
        for materialize_master_grads in (False, True):
          for opt_level in ("O0", "O1", "O2", "O3"):
            for how_to_zero in ("none", "model", "optimizer"):
              for use_multiple_loss_scalers in (False, True):
                if opt_level == "O1" or opt_level == "O2":
                    inject_inf_iters = (-1, 0, 1)
Michael Carilli's avatar
Michael Carilli committed
435
                else:
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
                    inject_inf_iters = (-1,)

                for inject_inf in inject_inf_iters:
                  if inject_inf >= 0:
                     inject_inf_locs = ("fp16", "fp32")
                     which_backwards = (0, 1)
                  else:
                     inject_inf_locs = ("fdsa",)
                     which_backwards = (None,)

                  for inject_inf_loc in inject_inf_locs:
                    for which_backward in which_backwards:
                        if use_multiple_loss_scalers:
                            num_losses = 2
                            loss_ids = [0, 1]
                        else:
                            num_losses = 1
                            loss_ids = [0, 0]
Michael Carilli's avatar
Michael Carilli committed
454

455
456
457
458
                        if inject_inf >= 0:
                            iters = 3
                        else:
                            iters = 2
Michael Carilli's avatar
Michael Carilli committed
459

460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
                        model0 = MyModel(1)
                        model1 = MyModel(2)

                        models = [model0, model1]

                        optimizer0 = FusedSGD([{'params' : model0.parameters(), 'lr' : 0.25}],
                                              momentum=0.125, materialize_master_grads=materialize_master_grads)
                        optimizer1 = FusedSGD([{'params' : model1.parameters(), 'lr' : 0.5}],
                                              momentum=0.25, materialize_master_grads=materialize_master_grads)

                        _amp_state.allow_incoming_model_not_fp32 = True
                        [model0, model1], [optimizer0, optimizer1] = amp.initialize(
                            [model0, model1],
                            [optimizer0, optimizer1],
                            opt_level=opt_level,
                            verbosity=0,
                            cast_model_type=False,
                            num_losses=num_losses)
                        _amp_state.allow_incoming_model_not_fp32 = False
Michael Carilli's avatar
Michael Carilli committed
479

480
481
482
                        _amp_state.loss_scalers[0]._loss_scale = 4.0
                        if use_multiple_loss_scalers:
                            _amp_state.loss_scalers[1]._loss_scale = 16.0
Michael Carilli's avatar
Michael Carilli committed
483

484
485
486
487
488
489
490
491
492
493
494
495
                        unskipped = 0
                        for i in range(iters):
                            if how_to_zero == "none":
                                for model in models:
                                    for param in model.parameters():
                                        param.grad = None
                            elif how_to_zero == "model":
                                for model in models:
                                    model.zero_grad()
                            else:
                                optimizer0.zero_grad()
                                optimizer1.zero_grad()
Michael Carilli's avatar
Michael Carilli committed
496

497
498
                            loss0 = model0(self.x)
                            loss1 = model1(self.x)
Michael Carilli's avatar
Michael Carilli committed
499

500
501
502
503
504
505
506
507
508
509
510
511
512
513
                            with amp.scale_loss(loss0, optimizer0, loss_id=loss_ids[0]) as scaled_loss:
                                scaled_loss.backward()
                                if i == inject_inf and which_backward == 0:
                                    if inject_inf_loc == "fp32":
                                        model0.weight0.grad[0] = float('inf')
                                    elif inject_inf_loc == "fp16":
                                        model0.weight1.grad[0] = float('inf')
                            with amp.scale_loss(loss1, optimizer1, loss_id=loss_ids[1]) as scaled_loss:
                                scaled_loss.backward()
                                if i == inject_inf and which_backward == 1:
                                    if inject_inf_loc == "fp32":
                                        model1.weight0.grad[0] = float('inf')
                                    elif inject_inf_loc == "fp16":
                                        model1.weight1.grad[0] = float('inf')
Michael Carilli's avatar
Michael Carilli committed
514

515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
                            # print("opt_level {} i {} inject_inf {} which_backward {} inject_inf_loc {} use_multiple_loss_scalers {}".format(opt_level, i, inject_inf, which_backward, inject_inf_loc, use_multiple_loss_scalers))

                            if i != inject_inf:
                                master_params = list(amp.master_params(optimizer0)) + \
                                                list(amp.master_params(optimizer1))
                                for param, reference_grad in zip(master_params,
                                        reference_grads[what_got_skipped(inject_inf, which_backward)][unskipped]):
                                    if opt_level == "O2" and not materialize_master_grads:
                                        continue
                                    else:
                                        self.assertTrue(torch.allclose(param.grad.float(), reference_grad.float()))
                                unskipped += 1

                            optimizer0.step()
                            optimizer1.step()

                        model_params = [p for p in model0.parameters()] + [p for p in model1.parameters()]
                        master_params = [p for p in amp.master_params(optimizer0)] + \
                                        [p for p in amp.master_params(optimizer1)]
                        for model, master, reference in zip(
                                model_params,
                                master_params,
                                final_params[what_got_skipped(inject_inf, which_backward)]):
                            self.assertTrue(torch.allclose(model, reference))
                            self.assertTrue(torch.allclose(model, master.to(model.dtype)))

                        if opt_level == "O1":
                            _amp_state.handle._deactivate()
Michael Carilli's avatar
Michael Carilli committed
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654

    @unittest.skipIf(disabled, "amp_C is unavailable")
    def test_3models2losses2optimizers(self):
        model0 = MyModel(1)
        model1 = MyModel(2)
        model2 = MyModel(3)

        optimizer0 = torch.optim.SGD([{'params' : model0.parameters(), 'lr' : 0.25},
                                      {'params' : model1.parameters(), 'lr' : 1.0}],
                                     momentum=0.5)
        optimizer1 = torch.optim.SGD([{'params' : model2.parameters(), 'lr' : 0.5}],
                                     momentum=0.25)

        # Again, can't do this:  reference_grads = [[]]*9
        reference_grads = [[], [], [], [], [], [], [], [], []]
        final_params = [None, None, None, None, None, None, None, None, None]
        for i in range(2):
            optimizer0.zero_grad()
            optimizer1.zero_grad()
            loss0 = model0(self.x) + model1(self.x)
            loss1 = model2(self.x) + model1(self.x)
            loss0.backward()
            loss1.backward()

            reference_grads[0].append([param.grad.data.clone() for param in model0.parameters()] +
                                   [param.grad.data.clone() for param in model1.parameters()])

            optimizer0.step()
            optimizer1.step()

        final_params[0] = \
            [param.data.clone() for param in model0.parameters()] + \
            [param.data.clone() for param in model1.parameters()] + \
            [param.data.clone() for param in model2.parameters()]

        def what_got_skipped(which_iter, which_backward, which_model):
            if which_iter == 0:
                if which_backward == 0:
                    if which_model == 0:
                        return 1
                    if which_model == 1:
                        return 2
                if which_backward == 1:
                    if which_model == 2:
                        return 3
                    if which_model == 1:
                        return 4
            if which_iter == 1:
                if which_backward == 0:
                    if which_model == 0:
                        return 5
                    if which_model == 1:
                        return 6
                if which_backward == 1:
                    if which_model == 2:
                        return 7
                    if which_model == 1:
                        return 8
            return 0

        for which_iter in (0,1):
            for which_backward in (0,1):
                if which_backward == 0:
                    which_models = (0,1)
                if which_backward == 1:
                    which_models = (2,1)
                for which_model in which_models:

                    model0 = MyModel(1)
                    model1 = MyModel(2)
                    model2 = MyModel(3)

                    optimizer0 = torch.optim.SGD([{'params' : model0.parameters(), 'lr' : 0.25},
                                                  {'params' : model1.parameters(), 'lr' : 1.0}],
                                                 momentum=0.5)
                    optimizer1 = torch.optim.SGD([{'params' : model2.parameters(), 'lr' : 0.5}],
                                                 momentum=0.25)

                    for i in range(3):
                        optimizer0.zero_grad()
                        optimizer1.zero_grad()
                        loss0 = model0(self.x) + model1(self.x)
                        loss1 = model2(self.x) + model1(self.x)
                        loss0.backward()
                        loss1.backward()

                        if i != which_iter:
                            reference_grads[what_got_skipped(which_iter,
                                    which_backward, which_model)].append(
                                [param.grad.data.clone() for param in model0.parameters()] +
                                [param.grad.data.clone() for param in model1.parameters()])

                        if i == which_iter:
                            if which_backward == 0:
                                # if which_model == 0:
                                    optimizer1.step()
                                # if which_model == 1:
                                #     optimizer1.step()
                            if which_backward == 1:
                                # if which_model == 2:
                                #     optimizer0.step()
                                # if which_model == 1:
                                    continue
                        else:
                            optimizer0.step()
                            optimizer1.step()

                    final_params[what_got_skipped(which_iter, which_backward, which_model)] = \
                        [param.data.clone() for param in model0.parameters()] + \
                        [param.data.clone() for param in model1.parameters()] + \
                        [param.data.clone() for param in model2.parameters()]

655
656
657
658
659
660
        for materialize_master_grads in (False, True):
          for opt_level in ("O0", "O1", "O2", "O3"):
            for how_to_zero in ("none", "model", "optimizer"):
              for use_multiple_loss_scalers in (False, True):
                if opt_level == "O1" or opt_level == "O2":
                    inject_inf_iters = (-1, 0, 1)
Michael Carilli's avatar
Michael Carilli committed
661
                else:
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
                    inject_inf_iters = (-1,)

                for inject_inf in inject_inf_iters:
                  if inject_inf >= 0:
                     inject_inf_locs = ("fp16", "fp32")
                     which_backwards = (0, 1)
                  else:
                     inject_inf_locs = ("fdsa",)
                     which_backwards = (None,)

                  for inject_inf_loc in inject_inf_locs:
                    for which_backward in which_backwards:
                      if use_multiple_loss_scalers:
                          num_losses = 2
                          loss_ids = [0, 1]
                      else:
                          num_losses = 1
                          loss_ids = [0, 0]
Michael Carilli's avatar
Michael Carilli committed
680

681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
                      if inject_inf >= 0:
                          iters = 3
                          if which_backward == 0:
                              which_models = (0, 1)
                          elif which_backward == 1:
                              which_models = (2, 1)
                      else:
                          iters = 2
                          which_models = (None,)

                      for which_model in which_models:
                          model0 = MyModel(1)
                          model1 = MyModel(2)
                          model2 = MyModel(3)

                          models = [model0, model1, model2]

                          optimizer0 = FusedSGD([{'params' : model0.parameters(), 'lr' : 0.25},
                                            {'params' : model1.parameters(), 'lr' : 1.0}],
                                            momentum=0.5, materialize_master_grads=materialize_master_grads)
                          optimizer1 = FusedSGD([{'params' : model2.parameters(), 'lr' : 0.5}],
                                                momentum=0.25, materialize_master_grads=materialize_master_grads)

                          _amp_state.allow_incoming_model_not_fp32 = True
                          [model0, model1, model2], [optimizer0, optimizer1] = amp.initialize(
                              [model0, model1, model2],
                              [optimizer0, optimizer1],
                              opt_level=opt_level,
                              verbosity=0,
                              cast_model_type=False,
                              num_losses=num_losses)
                          _amp_state.allow_incoming_model_not_fp32 = False

                          _amp_state.loss_scalers[0]._loss_scale = 4.0
                          if use_multiple_loss_scalers:
                              _amp_state.loss_scalers[1]._loss_scale = 16.0

                          unskipped = 0
                          for i in range(iters):
                              if how_to_zero == "none":
                                  for model in models:
                                      for param in model.parameters():
                                          param.grad = None
                              elif how_to_zero == "model":
                                  for model in models:
                                      model.zero_grad()
                              else:
                                  optimizer0.zero_grad()
                                  optimizer1.zero_grad()

                              loss0 = model0(self.x) + model1(self.x)
                              loss1 = model2(self.x) + model1(self.x)

                              with amp.scale_loss(loss0, optimizer0, loss_id=loss_ids[0]) as scaled_loss:
                                  scaled_loss.backward()
                                  if i == inject_inf and which_backward == 0:
                                      if which_model == 0:
                                          inj_model = model0
                                      elif which_model == 1:
                                          inj_model = model1
                                      else:
                                          raise RuntimeError(which_model + " invalid for loss 0")
                                      if inject_inf_loc == "fp32":
                                          inj_model.weight0.grad[0] = float('inf')
                                      elif inject_inf_loc == "fp16":
                                          inj_model.weight1.grad[0] = float('inf')
                              with amp.scale_loss(loss1, [optimizer0, optimizer1], loss_id=loss_ids[1]) as scaled_loss:
                                  scaled_loss.backward()
                                  if i == inject_inf and which_backward == 1:
                                      if which_model == 2:
                                          inj_model = model2
                                      elif which_model == 1:
                                          inj_model = model1
                                      else:
                                          raise RuntimeError(which_model + " invalid for loss 1 ")
                                      if inject_inf_loc == "fp32":
                                          inj_model.weight0.grad[0] = float('inf')
                                      elif inject_inf_loc == "fp16":
                                          inj_model.weight1.grad[0] = float('inf')

                              if i != inject_inf:
Michael Carilli's avatar
Michael Carilli committed
762
763
                                  master_params = list(amp.master_params(optimizer0)) + \
                                                  list(amp.master_params(optimizer1))
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
                                  for param, reference_grad in zip(master_params,
                                        reference_grads[what_got_skipped(inject_inf,
                                            which_backward, which_model)][unskipped]):
                                      if opt_level == "O2" and not materialize_master_grads:
                                          continue
                                      else:
                                          self.assertTrue(torch.allclose(param.grad.float(), reference_grad.float()))
                                  unskipped += 1

                              optimizer0.step()
                              optimizer1.step()

                          model_params = [p for p in model0.parameters()] + \
                                         [p for p in model1.parameters()] + \
                                         [p for p in model2.parameters()]
                          master_params = [p for p in amp.master_params(optimizer0)] + \
                                          [p for p in amp.master_params(optimizer1)]

                          # print("opt_level {} i {} inject_inf {} which_backward {} inject_inf_loc {} use_multiple_loss_scalers {} which_model {}".format(opt_level, i, inject_inf, which_backward, inject_inf_loc, use_multiple_loss_scalers, which_model))

                          for model, master, reference in zip(
                                  model_params,
                                  master_params,
                                  final_params[what_got_skipped(inject_inf, which_backward, which_model)]):
                              self.assertTrue(torch.allclose(model, reference))
                              self.assertTrue(torch.allclose(model, master.to(model.dtype)))

                          if opt_level == "O1":
                              _amp_state.handle._deactivate()
Michael Carilli's avatar
Michael Carilli committed
793
794
795

if __name__ == '__main__':
    unittest.main()